

a PPL company

RECEIVED

APR 01 2011 PUBLIC SERVICE COMMISSION

April 1, 2011

Mr. Jeff DeRouen

Executive Director

211 Sower Boulevard

Kentucky Public Service Commission

Frankfort, Kentucky 40602-0615

Louisville Gas and Electric Company State Regulation and Rates 220 West Main Street PO Box 32010 Louisville, Kentucky 40232 www.lge-ku.com

Rick E. Lovekamp Manager – Regulatory Affairs T 502-627-3780 F 502-627-3213 rick.lovekamp@lge-ku.com

RE: The Application of Louisville Gas and Electric Company for Approval of a Permanent Statistical Meter Sampling Plan Case No. 2000-00278 and The Application of Louisville Gas and Electric Company to Implement a Gas Regulator Inspection and Replacement Program Case No. 2002-00262

Dear Mr. DeRouen:

Enclosed please find five copies of Louisville Gas and Electric Company's 2010 Gas Meter Performance Control Plan and the 2010 Regulator Inspection and Replacement Report pursuant to the Commission's Order in the above mentioned proceedings.

Should you have any questions concerning the enclosed, please contact me at your convenience.

Sincerely,

Rick E. Lovekamp

Enclosure

Louisville Gas & Electric Gas Meter Performance Control Plan Year 2010

Year 2010 Gas Meter Sampling Plan Results

I. Introduction

The 2010 LG&E Gas Meter Performance Control Program required 8,057 gas meters within 145 control groups be tested and their accuracy performance documented.

One (1) residential meter classified as a Prior Meter (installed before 1985) remains installed however it is located within a vacant boarded up structure and no access could be gained to remove the meter. Multiple attempts have been made annually since 1995 to gain entry and remove the meter.

Any sampled meter which proof tested beyond +/- 2% (fast or slow) was considered to be a failed meter. The control groups sampled during 2010 performed extremely well and only one commercial class control group consisting of three (3) meters failed the sampling criteria. This report summarizes the results of the 2010 LG&E Gas Meter Sampling Program.

II. Meter Performance

The meter groups were separated into three capacity classifications. Meters with capacities up to and including 500 CFH, which primarily represent residential meters, represented the largest group with ninety-three (93) control groups and 7,215 meters. Meters with capacities which range from 501 CFH to 1500 CFH (Commercial), represented the second largest group with forty-four (44) control groups and 744 meters. Meters with capacities 1501 CFH (Industrial) and above comprised the balance of the sampling with eight (8) control groups and ninety-eight (98) meters.

A summary of each control group, along with statistical analysis data, is shown in appendix A. The definitions of selected statistical categories are included, and the sample groups are arranged from low to high capacity.

One hundred forty-four (144) out of the one hundred forty-five (145) control groups passed the sampling criteria in 2010. A total of eleven (11) control groups had their remaining population removed through the sampling program in 2010.

1

A. Residential Class - Up to and including 500 cfh

1. Strong Performing Groups - Reduced Sampling

The strongest performing meter groups in this capacity continue to be the American AL175, AL250, AC250, and the AL425 models. Of the 1,586 meters in the twenty-five (25) control groups of AL175 meters, only twenty-four (24) individual meters failed the sampling criteria, a 1.51 percent failure rate. The twenty-one (21) AC250 control groups had a total of eight (8) failures out of the 1,416 meters tested, a 0.56 percent failure rate. The twelve (12) AL425 control groups totaling 384 meters experienced three (3) failures, a 0.78 percent failure rate.

The American Meter Company AC250 residential model was the primary gas meter LG&E purchased as additional stock in 2010 for new business and as a replacement for various models of gas meters LG&E disposed of instead of having remanufactured, which continues to improve the overall accuracy of the installed meter population.

Test results from year 2010 were analyzed for the below groups to verify each model did not exceed the Limit Numbers For Reduced Inspection, Table VIII, under the American Standard – Sampling Procedures and Tables For Inspection By Attributes guidelines.

Model – American AL175 CFH Earliest Years - Last 10 Control Groups Tested = 824 Meters Tested Limit Number For Reduced Testing - 42 Actual Deviate Meters – 14

Model – American AC250 CFH Earliest Years - Last 10 Control Groups Tested = 566 Meters Tested Limit Number For Reduced Testing - 25 Actual Deviate Meters – 4

Model – American AL425 CFH Earliest Years - Last 10 Control Groups Tested = 320 Meters Tested Limit Number For Reduced Testing – 14 Actual Deviate Meters - 2

The below models will remain on Reduced Sampling in year 2011.

American Model AL175 CFH (Model Codes 033 and 33A) American Model AL425 CFH (Model Code 015) American Model AC250 CFH (Model Code 078)

2. Weak Performing Residential Groups

The older models of Rockwell residential class 250 CFH meters continue to be one of the poorest performing control groups. Of the two (2) Rockwell R250 Code 057 control groups consisting of eighty-two (82) meters sampled this year, eleven (11) of the individual meters failed the sampling criteria for a 13.41 percent failure rate.

Rockwell R250 gas meters removed from the system are being replaced by the better performing models of the American AL175 and AC250 gas meter. At the end of the 2010 only 320 Rockwell R250 gas meters remain installed.

The Rockwell 175 CFH meters continue to be one of the weaker performing control groups. Of the twenty (20) Rockwell R175 control groups consisting of 2,890 meters sampled this year, one hundred twenty-two (122) of the individual meters failed the sampling criteria for a 4.22 percent failure rate.

One control group within the Actaris 250 Metris model performed extremely weak. The five (5) control groups sampled this year experienced twenty (20) failures out of the 685 meters tested, a 2.91 percent failure rate. Actaris Metris 250 models when removed from service are disposed of and are not remanufactured for an additional service period.

The one (1) American AL250 control group totaling thirty-two (32) meters experienced two (2) failures, a 6.25 percent failure rate. This model is being phased out as the meters are removed due to the small number of this model installed. Only twenty-two meters of this model remain installed and they will be exhausted in the 2011 program.

B. Commercial Class - 501 cfh up to and including 1500 cfh

Forty-four (44) control groups in the Commercial Meter Class were tested in 2010 and there was one (1) control group failure. The one control group which failed, the 053 Rockwell R800 model, only had three (3) meters in the original 2010 population of which two (2) were changed for sample test, with one of them failing the sampling criteria. The remaining one meter will be removed in the 2011 program.

The strongest performing meters in this class was the American AL800 meter which experienced zero (0) individual meter failures within the eight (8) control groups tested, the AL1400 which experienced zero (0) individual meter failures within the seven (7) control groups tested, and the Rockwell #3 Emco which experienced zero (0) failures within the eight (8) control groups tested.

The AL1000 which experienced fifteen (15) individual meter failures within the eight (8) control groups tested and the Rockwell R750 which experienced seven (7) individual meter

failures within the eight (8) control groups tested both demonstrated acceptable performance.

Beginning in the 2003 test year, all Commercial Class Control Groups, regardless of whether they meet the Limit Numbers For Reduced Inspection, Table VIII, under the American Standard – Sampling Procedures and Tables For Inspection By Attributes guidelines, have been placed on the Single Sampling Plan For Normal Inspection due to the small volume of meters in the Commercial Class Control Groups.

C. Industrial Class - Over 1500 cfh

The eight (8) control groups in this capacity range performed well enough that no control groups failed the sampling criteria. Two of the control groups were exhausted by the 2010 Sampling Program. The six (6) control groups not exhausted in the 2010 sample program had no individual meters exceed the sampling accuracy criteria.

Beginning in 2003 test year, all Industrial Class control groups, regardless of whether they meet the Limit Numbers For Reduced Inspection, Table VIII, under the American Standard – Sampling Procedures and Tables For Inspection By Attributes guidelines, have been placed on the Single Sampling Plan For Normal Inspection due to the small volume of meters in the Industrial Class control groups.

III. Safety

As part of the LG&E Meter Sampling change-out activities, safety inspections were performed and "red-tags" were issued when deficiencies were found which resulted in a customers appliance being left off or the customers gas service partially or fully suspended until the deficiency was corrected by the customer. The results of these safety inspections directly associated with LG&E's Meter Sampling Program are summarized in Table 2 below.

Table 2: Year 2010 Safety Inspection Results			
Type of Problem/Appliance	<pre># of "Red Tags"</pre>		
Water Heater Not Venting Correctly/Leaks/Oth	ner 6		
Houseline Leak –left off at meter	14		
Obsolete Appliance (flexible hook-up lines, etc	;) 94		
Furnace Problem (internal leak, various Problem	ms) 4		
Cook Stove Leak	2		
Gas Grill Leak	3		
Fireplace Leak	1		
Corrosion On Service Head Adapter	2		

Space Heater Leak	1
Pilot Controls Leaking	1
Houseline Running Through Heating Duct	1
Protective Sleeve Covering Cracked	1
Leak Detected On Gas Piping	4

Additionally, 2,608 Customer Surveillance Notices were issued to customers to correct outside deficiencies on their meter loop or exposed outside gas piping.

Table 5. Teat 2010 Customer Survemance	volices issued
Type Of Customer Notice Issued	Number Issued
Corrosion / Rust On Outside Meter Loop & Associated Piping	2,395
Tree / Shrubbery Growing Inside / Against Meter Loop	36
Gas Piping Not Properly Supported	140
Meter Not Protected From Vehicular Damage	28
Customer Built Over Service Line / Around Meter	2

Table 3: Year 2010 Customer Surveillance Notices Issued

IV. Year 2010 Residential Meter Sampling Savings

Table 4, which highlights the estimated savings between a periodic change schedule and the LG&E Gas Meter Performance Control Program for the purchase of new/remanufactured residential class gas meters, is included on the next page.

Table 4:2010 Residential Class Meter Sampling
Program Estimated Savings

Metering Savings: Residential Gas Meters	
Periodic Program Costs (10-year Program):	
Number of Meters under Periodic Program [1]	32,292
Unit Remanufacture Cost – Average Blended Cost	\$ 26.37
Residential Meter Costs Under Periodic Program	\$851,540
Sampling Program Costs:	
Number of Meters under Sampling Program	7,215
Number of meters scrapped-Not Remanufactured	688
Number of Meters for Remanufacture	6,527
Remanufactured Meters	6,527
Average Unit Remanufacture Cost – All Models	\$26.37
Remanufactured Meter Costs	\$172,117
Replacement Meters (including FST Replacements)	688
Average Replacement Meter Cost (per unit)	\$ 39.50
Replacement Meter Costs	\$27,176
Total Meter Costs Under 2010 Sampling Program	\$199,293
Meter Cost Savings From 2010 Program	\$652,247

Administrative and Development Costs:	
Programming Development Costs:	
Number of Hours in Programming	60
Pay Rate with Overheads	\$ 65.00
Development Costs	\$ 3,900
Additional Administrative Costs (Supervisory):	
Total Hours (based on 10 hrs/week)	520
Billing Rate with Overheads	\$ 50.86
Additional Admin. Costs	\$26,447
Total Administrative & Development Costs	\$30,347

Net 2010 Residential Meter Cost Savings	\$621,900

[1] Based on residential meters on line end of year

APPENDIX A

Control Group Data/Analysis Control Group Test Data Range Frequency Histograms (Examples)

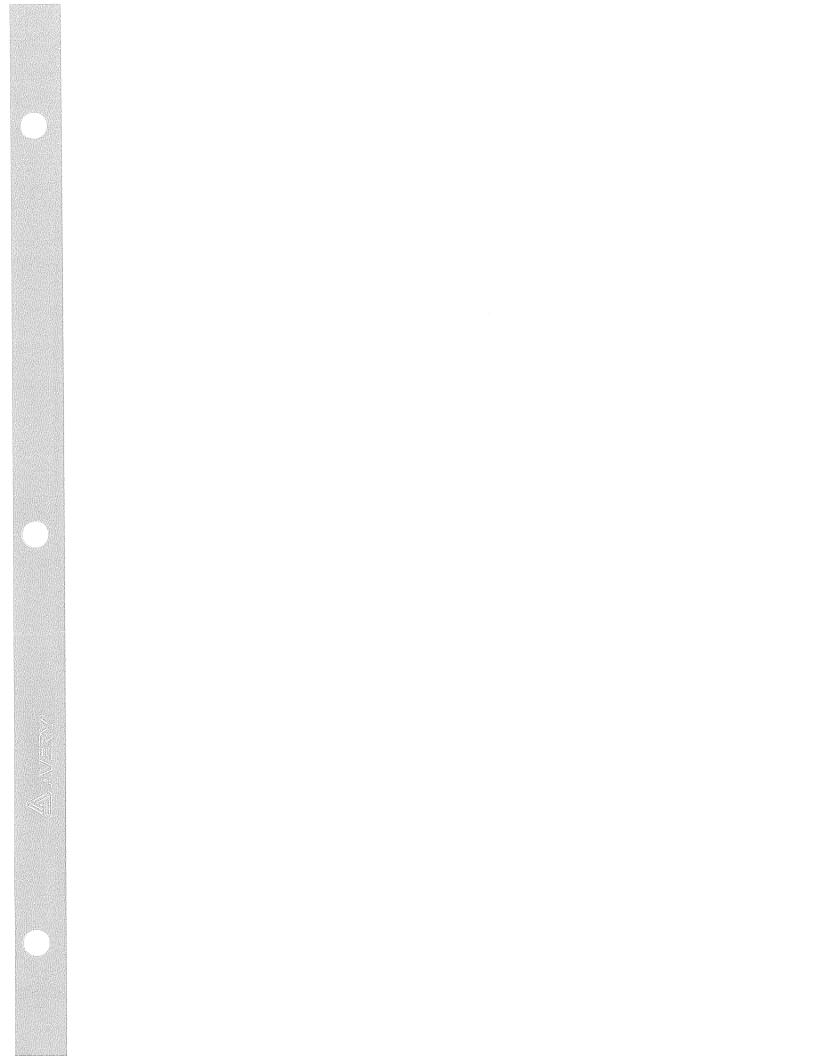
Λ 1

Statistical Definitions

MEDIAN

The median is the number in the middle of a set of numbers; that is, half the numbers have values that are greater than the median and half have values that are less.

STANDARD DEVIATION


The standard deviation is a measure of how widely values are dispersed from the average value (the mean).

SKEWNESS

Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with an asymmetric tail extending towards more positive values. Negative skewness indicates a distribution with an asymmetric tail extending tow r^{-4} s more negative values.

CONFIDENCE

The confidence interval is a range on either side of a sample mean. For example, if you order a product through the mail, you can determine, with a particular level of confidence, the earliest and latest the product should arrive.

American AL425	Test Year 201	0										
425 CFH		Control Gro	oup-Installed Y	ear								
Code: 015	1994	1995	1996	1997	1998	1999	2000	2001	2002	2004	2006	2008
Sample Plan	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced
Sample Size	1	32	32	32	32	32	32	32	32	32	32	32
Original Population	1	107	451	365	495	366	392	817	310	373	572	513
# of Slow Failures	0	о	0	0	1	0	0	0	0	o	0	o
# of Fast Failures	0	0	0	0	0	0	0	0	0	1	1	0
Total Failures:	0	0	0	0	1	0	0	0	0	1	1	0
Accept Level	0	5	5	5	5	5	5	5	5	5	5	5
Reject Level	1	8	8	8	8	8	8	8	8	8	8	8
Pass/ Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:												
Mean (Average Proof)	0.4	-0.18906	-0.25938	-0.325	-0.46406	-0.12813	0.021875	-0.04844	-0.14844	0.157813	-0.03125	0.003125
Median	0.4	-0.4	-0.4	-0.4	-0.325	0.1	0.175	-0.175	-0.125	-0.1	-0.05	0.025
Standard Deviation	NA	0.676058	0.624814	0.555616	1.126459	0.647817	0.594048	0.491457	0.617681	1.298952		1
Sample Variance	NA	0.457054	0.390393	0.30871	1.268909	0.419667	0.352893	0.24153	0.38153	1.687276		0.212409
Skewness	NA	0.253328	0.275059	0.358682	-3.14906	-0.60689	-0.34719	0.527726	-0.02242	4.19816		-0.33373
Minimum	0.4	-1.35	-1.25	-1.35	-5.65	-1.5	-1.3	-0.75	-1.3	-0.85		-0.95
Maximum	0.4	1.15	1	0.75	1.35	1.15	1.35	0.95	1	6.6	2.6	0.8
Count	1	32	32	32	32	32	32	32	32	32	32	32
Confidence Level(95.0%)	NA	0.243745	0.22527	0.200321	0.406132	0.233563	0.214177	0.177189	0.222698	0.468322	0.257303	0.166165

,

,

Meter Code 015 American AL 425

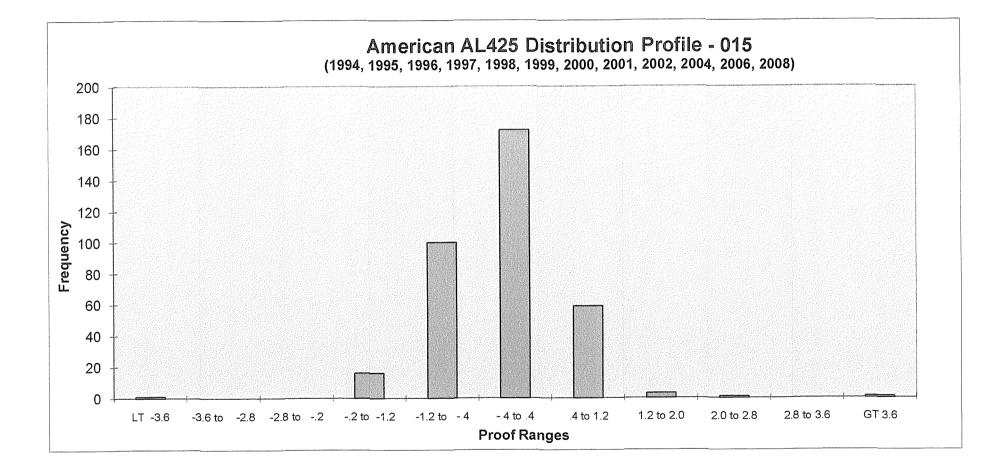
Code & Year:	1994
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	0
4 to .4	1
.4 to 1.2	0
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	1

Code & Year:	1995	C
Data Range	Number	
LT -3.6	0	L
-3.6 to -2.8	0	
-2.8 to2	0	-2
2 to -1.2	1	 -'
-1.2 to4	13	-'
4 to .4	11	
.4 to 1.2	7	.4
1.2 to 2.0	0	1
2.0 to 2.8	0	2
2.8 to 3.6	0	2
GT 3.6	0	· 12 2 2 0 T
Total	32	Γ

Code & Year:	1996
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	3
-1.2 to4	12
4 to .4	11
.4 to 1.2	6
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

.....

Code & Year:	1997
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	2
-1.2 to4	13
4 to .4	11
.4 to 1.2	6
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

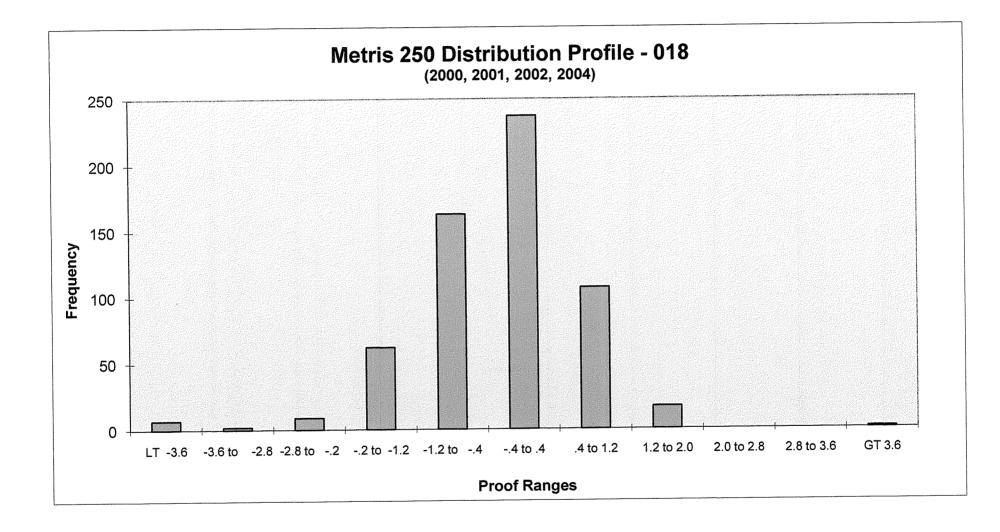

Code & Year:	1998
Data Range	Number
LT -3.6	1
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	3
-1.2 to4	10
4 to .4	15
.4 to 1.2	2
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

Code & Year:	1999	Code & Year:	2000	Code & Year:	2001	Code & Year:	2002	Code & Year:	2004
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	0								
-2.8 to2	0								
2 to -1.2	3	2 to -1.2	2	2 to -1.2	0	2 to -1.2	1	2 to -1.2	0
-1.2 to4	6	-1.2 to4	6	-1.2 to4	8	-1.2 to4	9	-1.2 to4	8
4 to .4	18	4 to .4	16	4 to .4	18	4 to .4	16	4 to .4	19
.4 to 1.2	5	.4 to 1.2	7	.4 to 1.2	6	.4 to 1.2	6	.4 to 1.2	3
1.2 to 2.0	0	1.2 to 2.0	1	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	1
2.0 to 2.8	0								
2.8 to 3.6	0								
GT 3.6	0	GT 3.6	1						
Total	32								

Meter Code 015 American AL 425

Code & Year:	2006	Code & Year:
Data Range	Number	Data Range
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	0	-2.8 to2
2 to -1.2	1	2 to -1.2
-1.2 to4	8	-1.2 to4
4 to .4	19	4 to .4
.4 to 1.2	3	.4 to 1.2
1.2 to 2.0	0	1.2 to 2.0
2.0 to 2.8	1	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	32	Total

2008	Code & Year:	Total
Number	Data Range	Number
0	LT -3.6	1
0	-3.6 to -2.8	0
0	-2.8 to2	0
0	2 to -1.2	16
7	-1.2 to4	100
17	4 to .4	172
8	.4 to 1.2	59
0	1.2 to 2.0	3
0	2.0 to 2.8	1
0	2.8 to 3.6	0
0	GT 3.6	1
32	Total	353

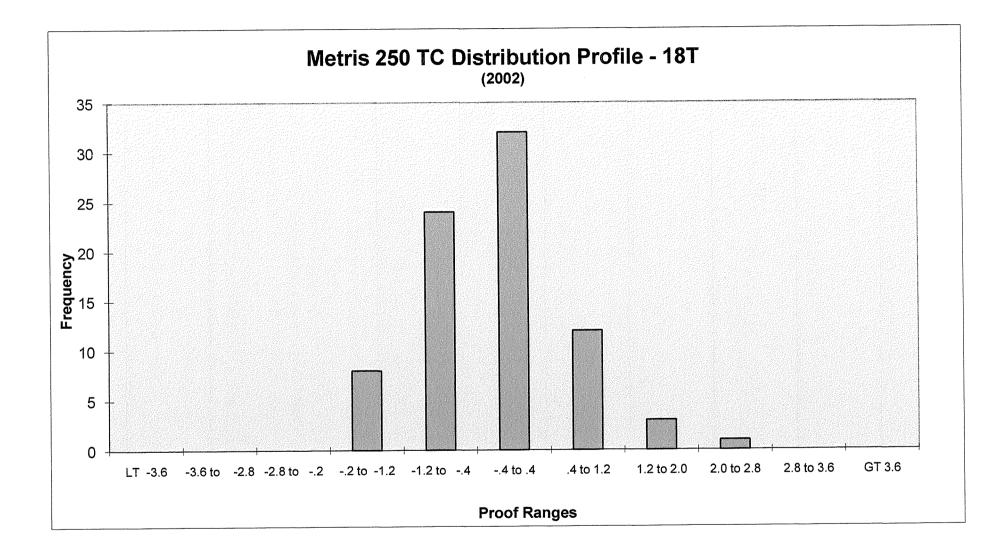

Metris 250	Test Year 201	0				4			
250 CFH	Control Group-Installed Year								
Code: 018	2000	2001	2002	2004					
Sample Plan	Single	Single	Single	Single					
Sample Size	125	80	200	200					
Original Population	1219	727	4065	4968					
# of Slow Failures	2	0	3	13					
# of Fast Failures	0	0	0	1					
Total Failures:	2	0	3	14					
Accept Level	14	10	14	14					
Reject Level	15	11	15	15					
Pass / Fail?	Pass	Pass	Pass	Pass					
If Failed - Remove By:									
Statistical Data:									
Mean (Average Proof)	0.1084	0.0925	-0.40775	-0.58					
Median	0.15	0.1	-0.425	-0.5					
Standard Deviation	1.064829	0.590918	0.789426	1.379389					
Sample Variance	1.13386	0.349184	0.623193						
Skewness	-5.16818	0.497646	-0.01772	2.567569					
Minimum	-8.85	-1.1	-3.1	-6.6					
Maximum	2	1.85	1.6	11.45					
Count	125	80	200						
Confidence Level(95.0%)	0.188509	0.131502	0.110076	0.19234					

Meter Code

018 N

Metris 250

Code & Year:	2000	Code & Year:	2001	Code & Year:	2002	Code & Y	'ear: 2004	Code & Year:	Total
Data Range	Number	Data Range	Number	Data Range	Number	Data Ra	nge Number		Number
LT -3.6	2	LT -3.6	0	LT -3.6	0	LT -3.6	5	LT -3.6	7
-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	1	-3.6 to	-2.8 1	-3.6 to -2.8	2
-2.8 to2		-2.8 to2	ō	-2.8 to2	2	-2.8 to -	.2 7	-2.8 to2	9
-2.8 to -1.2		2 to -1.2	0	2 to -1.2	23	2 to -1.	2 38	2 to -1.2	62
	14	-1.2 to4	17	-1.2 to4	74	-1.2 to -		-1.2 to4	163
-1.2 to4		-1.2 to .4	41	4 to .4	72	4 to .4	61	4 to .4	237
4 to .4	63		19	.4 to 1.2	23	.4 to 1.2	26		107
.4 to 1.2	39	.4 to 1.2			5	1.2 to 2.0			17
1.2 to 2.0	6	1.2 to 2.0	3	1.2 to 2.0					<u> ;</u>
2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8) 2.0 to 2.8	<u> </u>
2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	3 <u>(</u>	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0	GT 3.6	0	GT 3.6		GT 3.6	1
Total	125	Total	80	Total	200	Total	200	Total	605



Metris 250 TC	Test Year 2010			 			
175 CFH	Cont	rol Group-Instal	led Year	 	1	1	
Code: 18T	2002						
Sample Plan	Single						
Sample Size	80						
Original Population	250						
# of Slow Failures	0						
# of Fast Failures	1			 			<u> </u>
Total Failures:	1						
Accept Level	10						
Reject Level	11						
Pass / Fail?	Pass						
If Failed - Remove By:	NA						
Statistical Data:							
Mean (Average Proof)	-0.20063						
Median	-0.275						
Standard Deviation	0.787461						
Sample Variance	0.620095						
Skewness	0.627782						
Minimum	-1.7						
Maximum	2.35						
Count	80						
Confidence Level(95.0%)	0.175241					<u> </u>	

Year	201	10
------	-----	----

18T

Code & Year:	2002	Code & Year:	Totals
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	0
2 to -1.2	8	2 to -1.2	8
-1.2 to4	24	-1.2 to4	24
4 to .4	32	4 to .4	32
.4 to 1.2	12	.4 to 1.2	12
1.2 to 2.0	3	1.2 to 2.0	3
2.0 to 2.8	1	2.0 to 2.8	1
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	80	Total	80

Rockwell R175	Test Year 201	0								
175 CFH		Control Gro	up-Installed Y	ear						
Code: 024	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single
Sample Size	200	200	125	200	125	200	200	200	125	125
Original Population	3910	3725	2632	3853	3180	3668	4208	4443	3154	2978
# of Slow Failures	4	4	3	2	1	4	6	8	2	4
# of Fast Failures	7	6	2	7	3	12	5	2	3	2
Total Failures:	11	10	5	9	4	16	11	10	5	6
Accept Level	21	21	14	21	14	21	21	21	14	14
Reject Level	22	22	15	22	15	22	22	22	15	15
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:										
Mean (Average Proof)	0.2585	0.22625	0.1372	0.28325	0.3568	0.39175	0.09825	-0.041	0.1356	0.1372
Median	0.25	0.275	0.05	0.3	0.45	0.475	0.05	0.1	0.15	0.1
Standard Deviation	1.064811	1.240217	0.861308	1.151744	0.845275	1.187802	2.04506	1.130735	1.048978	1.01586
Sample Variance	1.133822	1.538139	0.741851	1.326515	0.71449	1.410874	4.182271	1.278562	1.100355	1.031972
Skewness	-0.18103	-4.19664	-0.32131	1.482617	-0.60964	-1.22861	3.686562	-1.30885	-1.51787	-0.97111
Minimum	-2.7	-11.3	-2.9	-3.4	-2.45	-6.75	-11.35	-5.7	-6	-5.5
Maximum	3.1	3.2	3.05	7.9	2.65	4.5	18.95	2.5	2.9	3.95
Count	200	200	125	200		200	200	200	125	125
Confidence Level(95.0%)	0.148475	0.172934	0.152479	0.160597	0.149641	0.165625	0.28516	0.157668	0.185703	0.17984

Rockwell R175	Test Year 2010									
175 CFH		Control Gro	up-Installed Ye						2006	2008
Code: 024	1996	1997	1998	1999	2000	2001	2002	2004		
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single
Sample Size	125	80	80	125	80	125	125	125	200	125
Original Population	1353	621	1045	1821	1107	1213	1677	2730	3778	2925
# of Slow Failures	4	2	2	2	0	5	3	0	5	1
# of Fast Failures	3	1	1	2	0	0	2	0	1	1
Total Failures:	7	3	3	4	0	5	5	0	6	2
Accept Level	14	10	10	14	10	14	14	14	21	14
	15	11	11	15	11	15	15	15	22	15
Reject Level Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:				0 0000	0 40242	-0.2452	-0.0724	-0.004	0.09025	0.1248
Mean (Average Proof)	-0.2788	-0.0225	-0.26	0.0892	-0.10313	-0.2452	0.05	0.05	0.00020	0.2
Median	-0.25	-0.05	-0.275	0.2	-0.15	-0.1	1.345939	0.668279	1.156918	0.817614
Standard Deviation	1.019236		0.947161	1.092101	0.704432		1.811551	0.446597	1.33846	0.668493
Sample Variance	1.038841	0.931449	0.897114		0.496224	0.917195	-5.49587	-0.17561	-4.67552	-0.77417
Skewness	-0.229	-0.07056	-0.18571	-2.79394	0.410374	-1.54616	-5.49567 -11.9	-0.17501	-9.55	-3.35
Minimum	-4.25	-3	-3.1	-7.65	-1.45		-11.9	1.7	2.05	2.2
Maximum	3.1	2.7	2.6		2	1.4 125	125	125	200	125
Count	125	80	80	125	80		0.238274	0.118307	0.161319	0.144744
Confidence Level(95.0%)	0.180438	0.214776	0.21078	0.193337	0.156764	0.169544	0.230274	0.110507	0.101010	V. 177177

Meter Code

024

Rockwell R175

Code & Year:	1986	Code & Year:
Data Range	Number	Data Range
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	4	-2.8 to2
2 to -1.2	11	2 to -1.2
-1.2 to4	27	-1.2 to4
4 to .4	71	4 to .4
.4 to 1.2	46	.4 to 1.2
1.2 to 2.0	34	1.2 to 2.0
2.0 to 2.8	5	2.0 to 2.8
2.8 to 3.6	2	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	200	Total

1987	Code & Year:	1988
Number	Data Range	Number
2	LT -3.6	0
1	-3.6 to -2.8	1
1	-2.8 to2	2
6	2 to -1.2	3
26	-1.2 to4	18
77	4 to .4	54
65	.4 to 1.2	36
16	1.2 to 2.0	9
5	2.0 to 2.8	1
1	2.8 to 3.6	1
0	GT 3.6	C
200	Total	125
and the second design of the		

	4090
Code & Year:	1989
Data Range	Number
LT -3.6	0
-3.6 to -2.8	2
-2.8 to2	0
2 to -1.2	11
-1.2 to4	34
4 to .4	64
.4 to 1.2	62
1.2 to 2.0	20
2.0 to 2.8	2
2.8 to 3.6	2
GT 3.6	3
Total	200

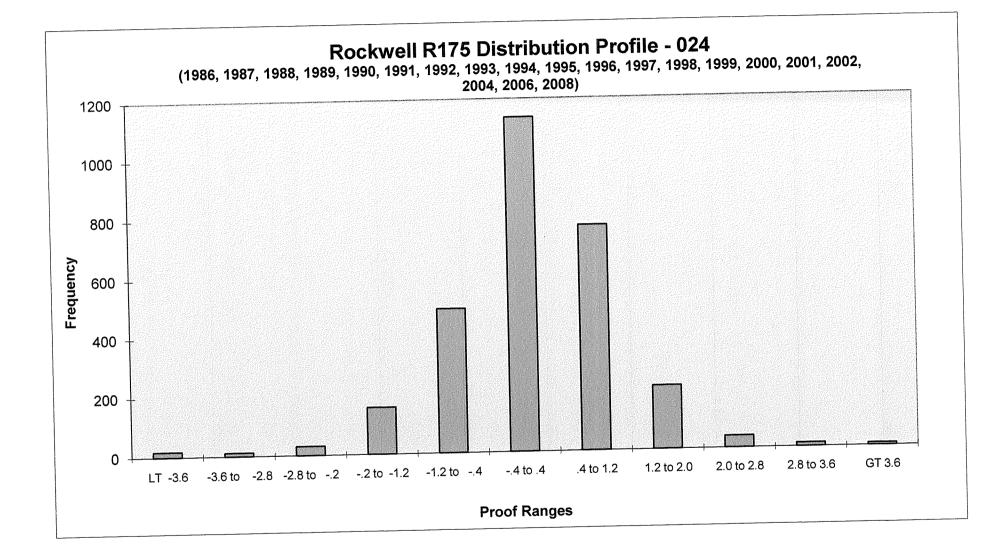
Code & Year:	1990
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	1
2 to -1.2	6
-1.2 to4	12
4 to .4	39
.4 to 1.2	56
1.2 to 2.0	8
2.0 to 2.8	3
2.8 to 3.6	0
GT 3.6	0
Total	125

1991	Code & Year:	1992	Code & Year:	1993	Code & Year:	1994	Code & Year:	1995
Number	Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number
Number		1		3	LT -3.6	1		1
<u> </u>				0	-3.6 to -2.8	1	-3.6 to -2.8	0
0						0	-2.8 to2	3
2		4		_			the second se	1
8	2 to -1.2	21					the second se	20
23	-1.2 to4	44	-1.2 to4				the second s	57
1	- 4 to 4	57	4 to .4	64	4 to .4			
			4 to 1 2	52	.4 to 1.2	32	.4 to 1.2	33
				16	1.2 to 2.0	11	1.2 to 2.0	8
in the second seco						2	2.0 to 2.8	0
10					and the second	1		1
1	2.8 to 3.6	0	and the second					1
1 1	GT 3.6	3	GT 3.6			0		105
200		200	Total	200	Total	125	lotal	125
	Number 2 0 2	Number Data Range 2 LT -3.6 0 -3.6 to -2.8 2 -2.8 to2 8 2 to -1.2 23 -1.2 to4 60 4 to .4 67 .4 to 1.2 26 1.2 to 2.0 10 2.0 to 2.8 1 GT 3.6	Number Data Range Number 2 LT -3.6 1 0 -3.6 to -2.8 1 2 -2.8 to -2 4 8 2 to -1.2 21 23 -1.2 to4 44 60 4 to .4 57 67 .4 to 1.2 44 26 1.2 to 2.0 23 10 2.0 to 2.8 2 1 2.8 to 3.6 0 1 GT 3.6 35	Number Data Range Number Data Range 2 LT -3.6 1 LT -3.6 0 -3.6 to -2.8 1 -3.6 to -2.8 2 -2.8 to2 4 -2.8 to2 8 2 to -1.2 21 2 to -1.2 23 -1.2 to4 44 -1.2 to4 60 4 to .4 57 4 to .4 60 .4 to 1.2 44 4 to 1.2 10 2.0 to 2.8 2 2.0 to 2.8 1 2.8 to 3.6 0 2.8 to 3.6 1 GT 3.6 3 GT 3.6	Number Data Range Number Data Range Number 2 LT -3.6 1 LT -3.6 3 0 -3.6 to -2.8 1 -3.6 to -2.8 0 2 -2.8 to2 4 -3.6 to -2.8 0 23 -1.2 to -1.2 21 -2 to -1.2 16 23 -1.2 to4 44 -1.2 to4 42 60 4 to .4 57 4 to .4 64 67 .4 to 1.2 44 .4 to 1.2 52 26 1.2 to 2.0 23 1.2 to 2.0 16 10 2.0 to 2.8 2 2.0 to 2.8 2 1 2.8 to 3.6 0 3.6 0 1 GT 3.6 3.6 0 3.6 0	Number Data Range LT -3.6 3 0 -3.6 to -2.8 1 -3.6 to -2.8 0 -3.6 to -2.8 -2.8 0 -3.6 to -2.8 -2.8 -2.8 -2.8 0 -2.8 to -2.8 to -2.8 -2.8 to -2.8 -2.8 to -2.8 to -2.8 to -4.4 to 4.4 to -4.4 to 4.4 to 1.2 to 2.0 to 2.8 to 3.6 0 2.0 to 2.8 to 3.6 2.0 to	Number Data Range Number Data Range Number Data Range Number 2 LT -3.6 1 LT -3.6 3 -	1991 Code & Year: 1992 Code & Year: 1992 Code & Year: 1992 Code & Year: 1992 Data Range Number LT -3.6 3 0 -3.6 to -2.8 1 -3.6 to -2.8 0 -3.6 to -2.8 1 -2.8 to -2 0 -2.8 to -2 -2.0 to -2.8 -2.1 to -4 -4.0 4 44 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4 -4.0 4

Meter Code

024 Rock

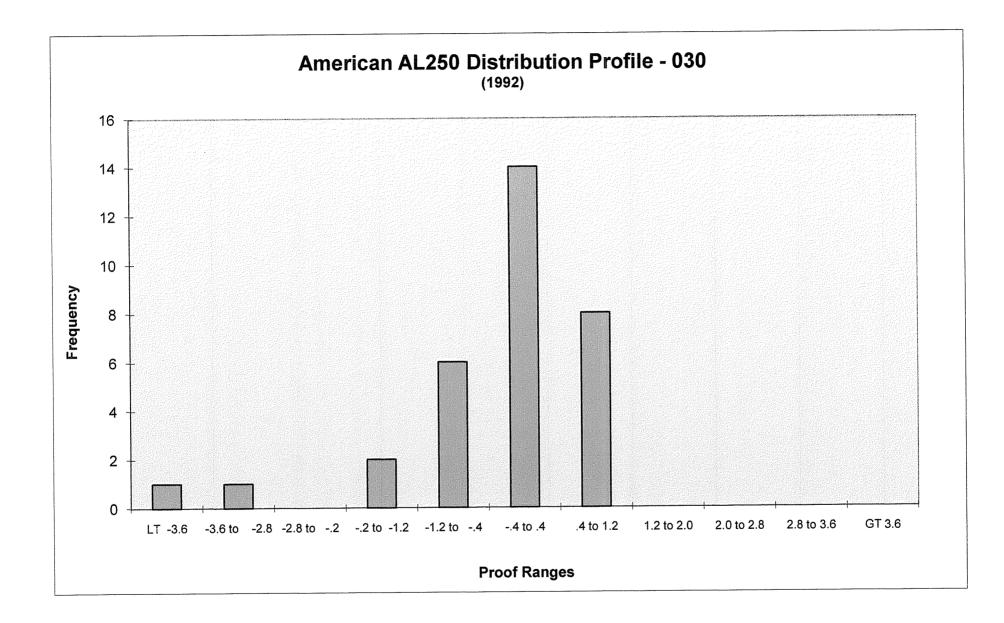
Rockwell R175


	1000	Code & Year:	1997	Code & Year:	1998	Code & Year:	1999	Code & Year:	2000
Code & Year:	1996	Code à Tear.							
Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number
LT -3.6	2	LT -3.6	0	LT -3.6	0	LT -3.6	1	LT -3.6	0
-3.6 to -2.8	2	-3.6 to -2.8	1	-3.6 to -2.8	2	-3.6 to -2.8	0	-3.6 to -2.8	0
-3.8 to -2.8	2	-2.8 to2	1	-2.8 to2	0	-2.8 to2	1	-2.8 to2	0
-2.8 to -1.2	16	2 to -1.2	6	2 to -1.2	11	2 to -1.2	5	2 to -1.2	2
2 to2	25	-1.2 to4	16	-1.2 to4	18	-1.2 to4	25	-1.2 to4	23
-1.2 to4	59	4 to .4	35	4 to .4	34	4 to .4	41	4 to .4	36
	15	.4 to 1.2	13	.4 to 1.2	11	.4 to 1.2	45	.4 to 1.2	16
.4 to 1.2 1.2 to 2.0	3	1.2 to 2.0	7	1.2 to 2.0	3	1.2 to 2.0	5	1.2 to 2.0	3
1.2 to 2.0		2.0 to 2.8	1	2.0 to 2.8	1	2.0 to 2.8	2	2.0 to 2.8	0
	2	2.8 to 3.6	j j	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0
2.8 to 3.6	2	GT 3.6	- O	GT 3.6	0	GT 3.6	0	GT 3.6	0
GT 3.6 Total	125	Total	80	Total	80	Total	125	Total	80
liotal	120	liotai	00						
Code & Vear	2001	Code & Year:	2002	Code & Year:	2004	Code & Year:	2006	Code & Year:	2008
Code & Year:	2001	Code & Year:	2002	Code & Year:	2004	Code & Year:			
				Code & Year: Data Range	2004 Number	Code & Year: Data Range	Number	Data Range	
Data Range		Data Range	2002 Number			Data Range LT -3.6		Data Range LT -3.6	
Data Range LT -3.6		Data Range LT3.6		Data Range	Number	Data Range LT -3.6 -3.6 to -2.8	Number	Data Range LT -3.6 -3.6 to -2.8	Number 0
Data Range LT -3.6 -3.6 to -2.8	Number 1 1	Data Range LT -3.6 -3.6 to -2.8		Data Range LT -3.6	Number 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2	Number 3 1 1	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2	Number 0 1 0
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2	Number 1 1 3	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2		Data Range LT -3.6 -3.6 to -2.8	Number 0 0 0 7	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2	Number 3 1 1 3	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2	Number 0 1 0 6
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2	Number 1 1 3 13	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2	Number 1 1	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2	Number 0 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2	Number 3 1 1 3 20	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4	Number 0 1 0 6
Data Range LT -3.6 -3.6 to -2.8 -2.8 to -2 2 to -1.2 -1.2 to4	Number 1 1 3 13 20	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4	Number 1 1 1 4	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2	Number 0 0 0 7 26 66	Data Range LT -3.6 -3.6 to -2.8 -2.8 to -2 -2 to -2 -2 to -2 -1.2 to -4 -4 to 4	Number 3 1 1 3 20 101	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4	Number 0 1 0 6 20 55
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4	Number 1 1 3 13 20 62	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4	Number 1 1 1 4 26	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4	Number 0 0 0 7 26	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2	Number 3 1 1 3 20 101 64	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2	Number 0 1 0 6 20 55 36
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2	Number 1 1 3 13 20 62 23	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2	Number 1 1 1 4 26 55	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to2 -1.2 to4 4 to .4	Number 0 0 0 7 26 66	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0	Number 3 1 1 3 20 101	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0	Number 0 1 0 6 20 55 36 6
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0	Number 1 1 3 13 20 62 23 23 2	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0	Number 1 1 1 4 26 55 29	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2	Number 0 0 0 7 26 66 22	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 3 1 1 3 20 101 64 6 1	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 0 1 0 6 20 55 36 6 1
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 1 1 3 13 20 62 23 2 2 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 1 1 4 26 55 29 6	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0	Number 0 0 7 26 66 22 4	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 3 1 1 3 20 101 64	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 0 1 0 6 20 55 36 6 1 1 0
Data Range LT -3.6 -3.6 to -2.8 -2.8 to -2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 1 1 3 13 20 62 23 2 0 0 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 1 1 1 4 26 55 29 6 1	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 0 0 7 26 66 22 4 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 3 1 1 3 20 101 64 6 1 0 0 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6 GT 3.6	Number 0 1 0 6 20 55 36 6 1 1 0 0
Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 1 1 3 13 20 62 23 2 2 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8	Number 1 1 1 26 55 29 6 1 1	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 0 0 0 7 26 66 66 22 4 0 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 3 1 1 3 20 101 64 6 1 0	Data Range LT -3.6 -3.6 to -2.8 -2.8 to2 2 to -1.2 -1.2 to4 4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	Number 0 1 0 6 20 55 36 6 1 1 0

Total Code & Year: Data Range Number 18 LT -3.6 13 -3.6 to -2.8 31 -2.8 to -.2 159 -.2 to -1.2 490 -1.2 to -.4 1136 -.4 to .4 767 .4 to 1.2 216 1.2 to 2.0 40 2.0 to 2.8 12 2.8 to 3.6 8 GT 3.6 2890 Total

Meter Code

ode 024


Rockwell R175

American AL 250	Test Year 2010				 			
250 CFH		Control Gr	oup-Installed	Year	 			
Code: 030	1992							
Sampling Plan	Single							
Sample Size	32							
Original Population	59	:						
# of Slow Failures	2							
# of Fast Failures	0							
Total Failures:	2							
Accept Level	5							
Reject Level	6							
Pass/ Fail?	Pass							
If Failed - Remove By:	NA							
Statistical Data:								
Mean (Average Proof)	-0.30156							
Median	-0.175							
Standard Deviation	1.119439							
Sample Variance	1.253143							
Skewness	-2.08501							
Minimum	-4.35							
Maximum	1.05							
Count	32							
Confidence Level(95.0%)	0.403601				 _L	<u> </u>		

Year 20	010
---------	-----

Code & Year:	1992	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	1	LT -3.6	1
-3.6 to -2.8	1	-3.6 to -2.8	1
-2.8 to2	0	-2.8 to - 2	0
2 to -1.2	2	2 to -1.2	2
-1.2 to4	6	-1.2 to4	6
4 to .4	14	4 to .4	14
.4 to 1.2	8	.4 to 1.2	8
1.2 to 2.0	0	1.2 to 2.0	0
2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	32	Total	32

American AL175	Test Year 2010)									
175 CFH	Control Gro	up-Installed Ye	ar						T		
Code: 033	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Sample Plan	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced
Sample Size	32	50	32	80	50	80	80	80	80	80	80
Original Population	1158	1795	846	3594	2184	6427	7866	7626	7685	7976	7948
# of Slow Failures	o	0	o	1	1	0	0	2	1	1	0
# of Fast Failures	0	1	0	0	0	0	3	0	2	1	0
Total Failures:	0	1	0	1	1	0	3	2	3	2	0
Accept Level	5	7	5	10	7	10	10	10	10	10	10
Reject Level	8	10	8	13	10	13	13	13	13	13	13
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:											
Mean (Average Proof)	0.276563	0.065	0.254688	0.195	0.325	0.279375	0.62375	0.225625	0.396875	0.234375	0.08
Median	0.1	0.1	0.25	0.2	0.3	0.25	0.65	0.275	0.4	0.15	0.2
Standard Deviation	0.710745	0.844445	0.603533	0.592442	0.524915	0.608052	0.92082	0.864233	0.809608	1.224114	0.671603
Sample Variance	0.505159	0.713087	0.364252	0.350987	0.275536	0.369727	0.84791	0.746898	0.655465	1.498455	0.451051
Skewness	0.102723	1.66073	-0.40971	-0.33719	-0.757	-0.37655	1.547507	-1.40098	0.128155	5.786249	-0.29851
Minimum	-1.4	-2	-1.75	-2.05	-1.55	-1.65	-1.85	-3.3	-2.65	-2.05	-1.65
Maximum	1.85	4.05	2	1.65	1.3	1.7	5.45	1.75	3.65	9.65	1.85
Count	32	50	32	80	50	80	80	80	80	80	80
Confidence Level(95.0%)	0.256251	0.239989	0.217597	0.131841	0.149179	0.135315	0.204918	0.192326	0.180169	0.272413	0.149458

American AL175	Test Year 2010)	·····							
175 CFH		Control Group-Installed Year								
Code: 033	1996	1997	1998	1999	2000	2001	2002	2004	2006	2008
Sample Plan	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced
Sample Size	80	80	80	80	80	80	50	50	50	50
Original Population	5107	983	5631	8378	7676	4471	2740	2142	1456	2051
# of Slow Failures	О	1	1	0	1	0	0	1	ο	1
# of Fast Failures	0	1	1	1	0	1	0	0	0	1
Total Failures:	0	2	2	1	1	1	0	1	0	2
Accept Level	10	10	10	10	10	10	7	7	7	7
Reject Level	13	13	13	13	13	13	10	10	10	10
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:										
Mean (Average Proof)	0.1275	-0.05125	-0.18375	-0.0275	0.12375	-0.09187	-0.142	-0.283	-0.074	0.101
Median	0.1	-0.05	-0.225	-0.15	0.15	-0.025	-0.175	-0.35	-0.075	0.1
Standard Deviation	0.578075	0.97643	0.804881	0.777162	0.73991		0.52957	0.607068	0.578989	1.029736
Sample Variance	0.334171	0.953416	0.647834	0.603981	0.547467	0.397876		0.368532	0.335229	1.060356
Skewness	0.310657	1.052969	-0.32582	3.659207	-1.80804	-0.00886	-0.14465	0.572234	0.52202	3.667418
Minimum	-1.1	-3	-4.35	-1.3	-3.9	-1.55	-1.45	-2.15	-1.15	-2.3
Maximum	1.8	4.65	3.65		2	2.15	0.85	1.65	2	6
Count	80	80	80	80	80		50	50	50	50
Confidence Level(95.0%)	0.128644	0.217294	0.179118	0.172949	0.164659	0.140372	0.150502	0.172527	0.164547	0.292648

Meter Code 033 American AL175

Code & Year:	1985	Co
	Number	
Data Range	Number	
LT -3.6	0	
-3.6 to -2.8	0	-3. -2
-2.8 to2	0	-2
2 to -1.2	1	2
-1.2 to4	4	-1
4 to .4	15	4
.4 to 1.2	8	.4
1.2 to 2.0	4	1.
2.0 to 2.8	0	2.
2.8 to 3.6	0	
GT 3.6	0	G
Total	32	

Code & Year:	1986
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	3
-1.2 to4	7
4 to .4	27
.4 to 1.2	12
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	1
Total	50

Code & Year:	1987
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	1
-1.2 to4	0
4 to .4	17
.4 to 1.2	13
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

Code & Year:	1988
	Number
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	1
2 to -1.2	1
-1.2 to4	5
4 to .4	51
.4 to 1.2	15
1.2 to 2.0	7
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1989
	Number
Data Range	Number
LT -3.6	. 0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	1
-1.2 to4	2
4 to .4	28
.4 to 1.2	18
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	50

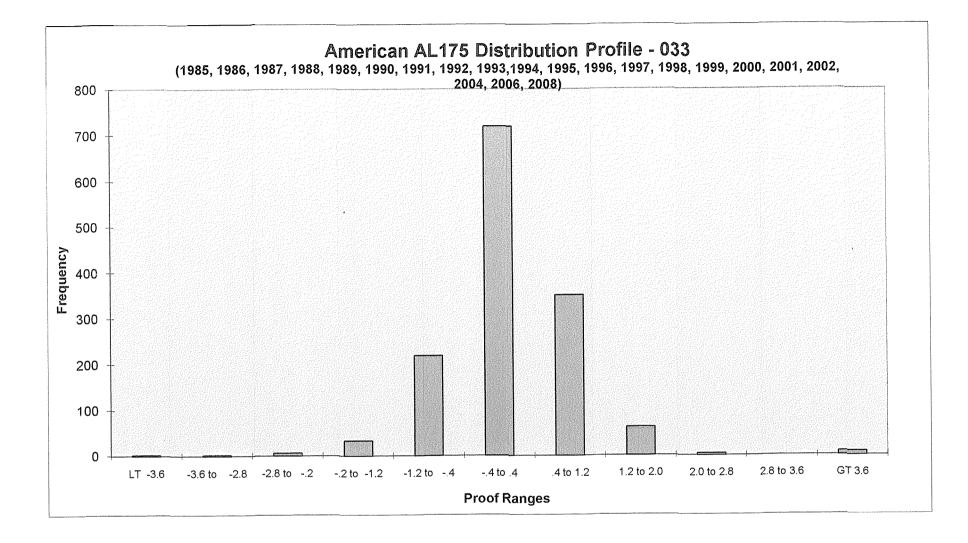
Code & Year:	1990	Code & Year:	1991	Code & Year:	1992	Code & Year:	1993	Code & Year:	1994
Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number	Data Range LT -3.6	Number 0
LT -3.6	0	LT -3.6	0	LT -3.6 -3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0
-3.6 to -2.8	0	-3.6 to -2.8 -2.8 to2	0	-2.8 to2	1	-2.8 to2	1	-2.8 to2	1
-2.8 to2	2	2 to -1.2	2	2 to -1.2	2	2 to -1.2	2	2 to -1.2	1
-1.2 to4	6	-1.2 to4	5	-1.2 to4	8	-1.2 to4	3	-1.2 to4	49
4 to .4	36	4 to .4	21	4 to .4	34 27	4 to .4	27	.4 to 1.2	17
.4 to 1.2	32	.4 to 1.2	38	.4 to 1.2 1.2 to 2.0	7	1.2 to 2.0	8	1.2 to 2.0	3
1.2 to 2.0 2.0 to 2.8	4	2.0 to 2.8	2	2.0 to 2.8	0	2.0 to 2.8	1	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6 GT 3.6	0
GT 3.6	0	GT 3.6	1	GT 3.6	0 80	GT 3.6 Total	80	Total	80
Total	80	Total	80	Total	80	TULAI	00	Liotar	

Meter Code 033 American AL175

1995
Number
0
0
0
1
19
31
27
2
0
0
0
80

Code & Year:	1996
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	14
4 to .4	46
.4 to 1.2	18
1.2 to 2.0	2
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1997
Data Range	Number
LT -3.6	0
-3.6 to -2.8	1
-2.8 to2	0
2 to -1.2	5
-1.2 to4	20
4 to .4	36
.4 to 1.2	12
1.2 to 2.0	5
2.0 to 2.8	
2.8 to 3.6	0
GT 3.6	1
Total	80

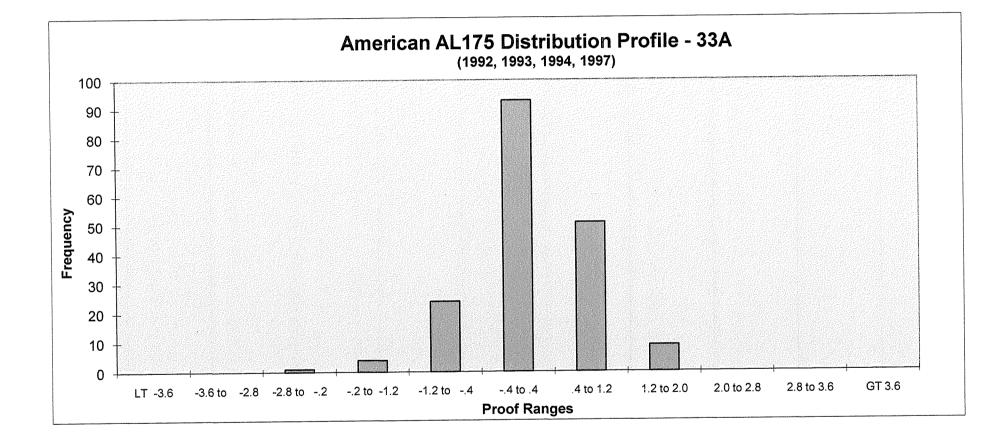

Code & Year:	1998
Data Range	Number
LT -3.6	1
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	23
4 to .4	46
.4 to 1.2	9
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	1
Total	80

Code & Year:	1999
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	2
-1.2 to4	16
4 to .4	45
.4 to 1.2	15
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	1
Total	80

Code & Year:	2000	Code & Year:	2001	Code & Year:	2002	Code & Year:	2004	Code & Year:	2006
Data Range	Number								
LT -3.6	1	LT -3.6	0						
-3.6 to -2.8	0								
-2.8 to2	0	-2.8 to2	0	-2.8 to2	0	-2.8 to2	1	-2.8 to2	0
2 to -1.2	1	2 to -1.2	6	2 to -1.2	1	2 to -1.2	1	2 to -1.2	0
-1.2 to4	7	-1.2 to4	17	-1.2 to4	16	-1.2 to4	19	-1.2 to4	10
4 to .4	48	4 to .4	40	4 to .4	26	4 to .4	26	4 to .4	31
.4 to 1.2	20	.4 to 1.2	16	.4 to 1.2	7	.4 to 1.2	1	.4 to 1.2	8
1.2 to 2.0	3	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	2	1.2 to 2.0	1
2.0 to 2.8	0	2.0 to 2.8	1	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0								
GT 3.6		GT 3.6	0						
Total	80	Total	80	Total	50	Total	50	Total	50

Meter Code 033 American AL175

Code & Year:	2008	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	2
-3.6 to -2.8	0	-3.6 to -2.8	2
-2.8 to2	1	-2.8 to2	6
2 to -1.2	0	2 to -1.2	33
-1.2 to4	9	-1.2 to4	218
4 to .4	29	4 to .4	719
.4 to 1.2	10	.4 to 1.2	350
1.2 to 2.0	0	1.2 to 2.0	62
2.0 to 2.8	0	2.0 to 2.8	4
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	1	GT 3.6	8
Total	50	Total	1404



Г	Test Year 2010		the state of the state			-	 <u></u>	Alana alana baran aras aras aras aras aras aras aras
175 CFH			up-Installed Ye		T			
Code: 33A	1992	1993	1994	1997			 	
Sample Plan	Reduced	Reduced	Reduced	Reduced				
Sample Size	80	50	50	2				
Original Population	5038	1995	2592	3*				
# of Slow Failures	0	1	0	0				
# of Fast Failures	0	0	0	0				
Total Failures:	0	1	0	0				
Accept Level	10	7	7	0				
Reject Level	13	10	10	1				
Pass / Fail?	Pass	Pass	Pass	Pass				
If Failed - Remove By:	NA	NA	NA	Exhaust				
Statistical Data:								
Mean (Average Proof)	0.16125	0.256	0.059	-0.2				
Median	0.2	0.25	0.025	-0.2				
Standard Deviation	0.663324	0.71832	0.647813					
Sample Variance	0.439998	0.515984	0.419662	0.72				
Skewness	-0.62662	-1.23256	0.076368	NA				
Minimum	-1.95		-1.65	-0.8				
Maximum	1.75	1.55		0.4				
Count	80	50	50					
Confidence Level(95.0%)	0.147615	0.204144	0.184107	7.623723			 <u> </u>	

* Population less than required 32 minimum sample size - all meters to be changed - Single Sampling Plan for Normal Inspection used to obtain sample size to determine if control group passed or failed.

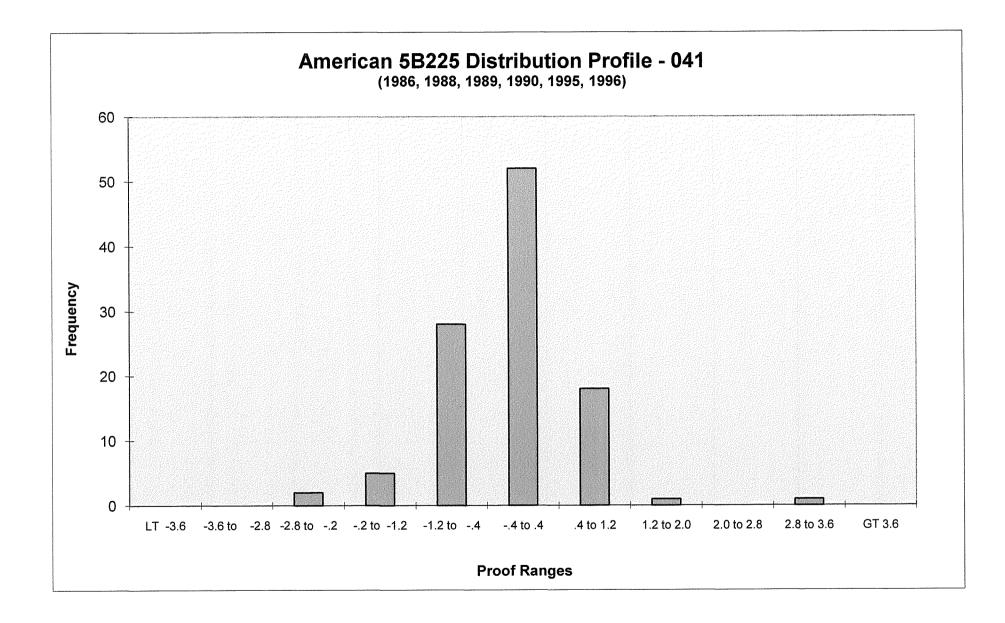
Meter Code 33A American AL175

Code & Year:	1992	Code & Year:	1993	Code & Year:	1994	Code & Year:	1997	Code & Year:	Total
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	Ō	-3.6 to -2.8	0						
-2.8 to2		-2.8 to2	1	-2.8 to2	0	-2.8 to2	0	-2.8 to2	1
2 to -1.2	3	2 to -1.2	0	2 to -1.2	1	2 to -1.2	0	2 to -1.2	4
-1.2 to4	10	-1.2 to4	4	-1.2 to4	9	-1.2 to4	1	-1.2 to4	24
-,4 to .4	40	4 to .4	24	4 to .4	28	4 to .4	1	4 to .4	93
.4 to 1.2	24	.4 to 1.2	18	.4 to 1.2	9	.4 to 1.2	0	.4 to 1.2	51
1.2 to 2.0	3	1.2 to 2.0	3	1.2 to 2.0	3	1.2 to 2.0	0	1.2 to 2.0	9
2.0 to 2.8		2.0 to 2.8	0						
2.8 to 3.6		2.8 to 3.6	0						
GT 3.6	0								
Total	80	Total	50	Total	50	Total	2	Total	182

American 5B225	Test Year 2010						
225 CFH		Control Gro	oup-Installed Y	'ear			
Code: 041	1986	1988	1989	1990	1995	1996	
Sample Plan	Single	Single	Single	Single	Single	Single	
Sample Size	32	1	8	2	32	32	
Original Population	40	1*	25*	12*	122	203	
# of Slow Failures	1	0	0	0	0	1	
# of Fast Failures	0	0	1	0	0	0	
Total Failures:	1	0	1	0	0	1	
Accept Level	5	о	1	0	5	5	
Reject Level	6	1	2	1	6	6	
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	
If Failed - Remove By:	NA	Exhaust	NA	NA	NA	NA	
Statistical Data:							
Mean (Average Proof)	-0.03125	-0.15	0.35	-0.175	-0.0125	-0.46719	
Median	0.025	-0.15	0.125	-0.175	0.025	-0.45	
Standard Deviation	0.8554144	NA	1.172908	1.166726	0.494812	0.623803	
Sample Variance	0.7317339	NA	1.375714	1.36125	0.244839	0.389131	
Skewness	-0.568937	NA	2.075943	NA	0.102939	-0.43889	
Minimum	-2.25	-0.15	-0.8	-1	-0.85	-2.25	
Maximum	1.8	-0.15	3.05	0.65	1.15	0.75	
Count	32	1	8	2	32	32	
Confidence Level(95.0%)	0.3084098	NA	0.980576	10.48262	0.178399	0.224905	

* Population less than required 32 minimum sample size - all meters to be changed - Single Sampling Plan for Normal Inspection used to obtain sample size to determine if control group passed or failed.

Meter Code 041 American 5B-225

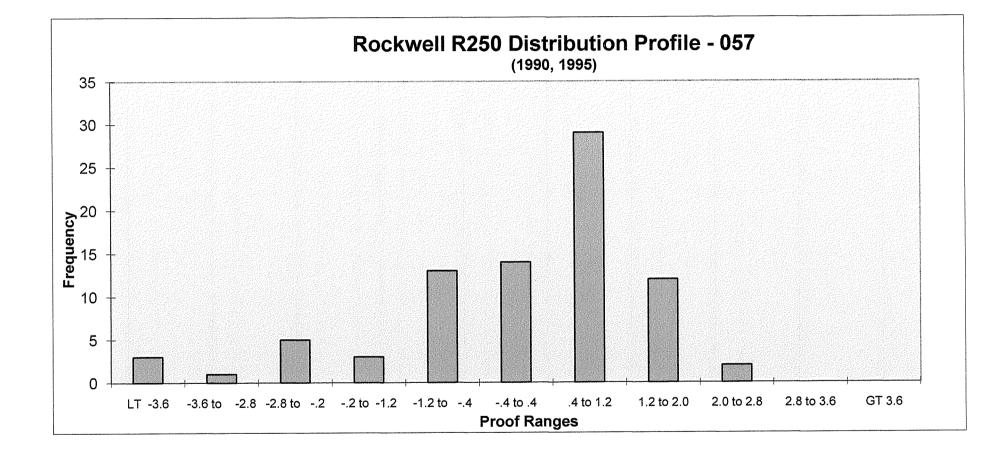

Data Range

Code & Year:	1986	Code & Year:
Data Range	Number	Data Range
		Y
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	1	-2.8 to2
2 to -1.2	2	2 to -1.2
-1.2 to4	5	-1.2 to4
4 to .4	14	4 to .4
.4 to 1.2	9	.4 to 1.2
1.2 to 2.0	1	1.2 to 2.0
2.0 to 2.8	0	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	32	Total

1988	Code & Year:	1989
Number	Data Range	Number
0	LT -3.6	0
0	-3.6 to -2.8	0
0	-2.8 to2	0
0	2 to -1.2	0
0	-1.2 to4	1
1	4 to .4	5
0	.4 to 1.2	1
0	1.2 to 2.0	0
0	2.0 to 2.8	0
0	2.8 to 3.6	1
0	GT 3.6	0
1	Total	8

Code & Year:	1990
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	2
4 to .4	0
.4 to 1.2	0
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	2

Code & Year:	1995	Code & Year:	1996	Code & Year:	Total
Data Range	Number	Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	1	-2.8 to2	2
2 to -1.2	0	2 to -1.2	3	2 to -1.2	5
-1.2 to4	7	-1.2 to4	13	-1.2 to4	28
4 to .4	19	4 to .4	13	4 to .4	52
.4 to 1.2	6	.4 to 1.2	2	.4 to 1.2	18
1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	1
2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	1
GT 3.6	0	GT 3.6	0	GT 3.6	0
Total	32	Total	32	Total	107



Rockwell R250	Test Year 2010								
250 CFH		Control Gro	up-Installed Y	ear					
Code: 057	1990	1995							
Sample Plan	Single	Single							
Sample Size	50	32							
Original Population	305	150							
# of Slow Failures	4	5							
# of Fast Failures	2	0							
Total Failures:	6	5							
Accept Level	7	5							
Reject Level	8	6							
Pass / Fail?	Pass	Pass							
If Failed - Remove By:	NA	NA							
Statistical Data:									
Mean (Average Proof)	0.001	-0.01875							
Median	0.525	0.45							
Standard Deviation	1.653182	1.341325							
Sample Variance	2.733009	1.799153				1			
Skewness	-1.74066	-1.10479							
Minimum	-5.15	-3.3							
Maximum	2.35	1.95							
Count	50	32							
Confidence Level(95.0%)	0.469829	0.483599							

Meter Code 057 Rockwell R250

Code & Year:	1000	0 1 0 1/ 1005
joode a real.	1990	Code & Year: 1995
Data Range	Number	Data Range Numb
LT -3.6	3	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	1	-2.8 to2
2 to -1.2	2	2 to -1.2
-1.2 to4	10	-1.2 to4
4 to .4	9	4 to .4
.4 to 1.2	15	.4 to 1.2
1.2 to 2.0	8	1.2 to 2.0
2.0 to 2.8	2	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	50	Total

/ear:	1995	C	ode &	Year:		Total
		Γ				
ange	Number		Data F	Range	I	Number
	0	L	T -3.6	5		3
-2.8	1	-:	3.6 to	-2.8		1
.2	4	-2	2.8 to	2		5
2	1	-	2 to -	1.2		3
.4	3	-	1.2 to	4		13
	5		4 to .4			14
	14	.4	4 to 1.2	2		29
)	4	1	.2 to 2	.0		12
3	0	2	.0 to 2	.8		2
6	0	2	.8 to 3	.6		0
	0	G	ST 3.6			0
	32	Т	otal			82

American AC250	Test Year 201	0			<u></u>						
250 CFH		Control Gro	up-Installed Y	ear					T	r	
Code: 078	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Sample Plan	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced
Sample Size	32	80	80	80	50	80	50	32	32	50	80
Original Population	897	4046	3494	4057	3084	4379	2656	42	610	2300	4369
# of Slow Failures	0	0	0	0	1	0	о	0	0	0	0
# of Fast Failures	0	0	0	0	0	2	0	1	0	0	2
Total Failures:	0	0	0	0	1	2	0	1	0	0	2
Accept Level	5	10	10	10	7	10	7	5	5	7	10
Reject Level	8	13	13	13	10	13	10	8	8	10	13
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:											
Mean (Average Proof)	0.190625	0.176875	-0.2025	-0.04313	-0.458	0.095	-0.612	0.154688	0.44375	0.087	0.296875
Median	0.225	0.15	-0.2	-0.025	-0.35	0.075	-0.675	0.25	0.525	0.15	0.25
Standard Deviation	0.57648	0.581571	0.563044	0.502572	0.546824	0.696583	0.540744	0.66942	0.641162	0.496293	0.842327
Sample Variance	0.332329	0.338224	0.317019	0.252579	0.299016	0.485228	0.292404	0.448122	0.411089	0.246307	0.709515
Skewness	-0.49471	0.059834	0.25605	-0.20703	-1.56323	0.978642	-0.08321	0.316838		-0.05549	3.260054
Minimum	-1.35	-1.05	-1.45	-1.3	-2.6	-1.35	-2	-1.4	-1.2	-1.5	-1.2
Maximum	1.25	1.65		1.15	0.45	2.95	0.55	2.15		1.8	4.9
Count	32	80	80	80	50	80	50	32	32	50	80
Confidence Level(95.0%)	0.207843	0.129422	0.125299	0.111842	0.155406	0.155017	0.153678	0.241351	0.231164	0.141045	0.187451

American AC250	Test Year 2010									
250 CFH		Control Gro	up-Installed Ye			0004	2002	2004	2006	2008
Code: 078	1996	1997	1998	1999	2000	2001	2002	Reduced	Reduced	Reduced
Sample Plan	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	Reduced	80	80	80
Sample Size	80	80	80	80	80	80	50	00	00	00
Original Population	9310	8581	6489	4701	5595	5392	2410	3905	6357	6998
# of Slow Failures	о	0	0	0	0	1	0	0	0	0
# of Fast Failures	0	0	0	0	0	0	0	1	0	0
Total Failures:	0	0	0	0	0	1	0	1	0	0
		10	10	10	10	10	7	10	10	10
Accept Level	10	10	13	13	13	13	10	13	13	13
Reject Level	13	13		Pass						
Pass / Fail?	Pass	Pass	Pass	Pass	Fass	1 455				
If Failed - Remove By:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Statistical Data:				0.00.075	0.000075	0.211875	0.124	0.59	0.440625	0.305
Mean (Average Proof)	0.2025	0.15125	0.210625	0.084375	0.206875	0.211075	0.124	0.575	0.4	0.325
Median	0.2	0.1	0.2	0.1	0.175	0.20	0.366901	0.646138	0.506733	0.401469
Standard Deviation	0.428413	0.5125	0.421847	0.46488	0.483902	• • • •		0.417494	0.256778	0.161177
Sample Variance	0.183538	0.262657	0.177955		0.234161	0.254889		0.31182	0.187703	-0.31636
Skewness	0.243417	0.446275	0.070849	-0.42244	0.241478	-2.11741		-0.8	-1	-0.9
Minimum	-0.85	-1.05	-0.7	-1.2	-1.2	-2.55	-0.55	2.15	1.95	1.3
Maximum	1.25	1.65		1.1	1.55	80		2.13	80	80
Count	80		80	80	80		1	0.143791	0.112768	
Confidence Level(95.0%)	0.095339	0.114051	0.093878	0.103454	0.107687	0.112352	0.104272	0.140701	0.112.00	

Meter Code 078 American AC250

Code & Year:	1985	
Data Range	Number	
LT -3.6	0	
-3.6 to -2.8	0	
-2.8 to2	0	
2 to -1.2	1	
-1.2 to4	3	
4 to .4	15	
.4 to 1.2	12	
1.2 to 2.0	1	
2.0 to 2.8	0	
2.8 to 3.6	0	
GT 3.6	0	
Total	32	

Code & Year:	1986
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	10
4 to .4	47
.4 to 1.2	20
1.2 to 2.0	3
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1987
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	
-1.2 to4	26
4 to .4	43
.4 to 1.2	7
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1988
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	2
-1.2 to4	15
4 to .4	50
.4 to 1.2	13
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1989
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	1
2 to -1.2	2
-1.2 to4	19
4 to .4	27
.4 to 1.2	1
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	50

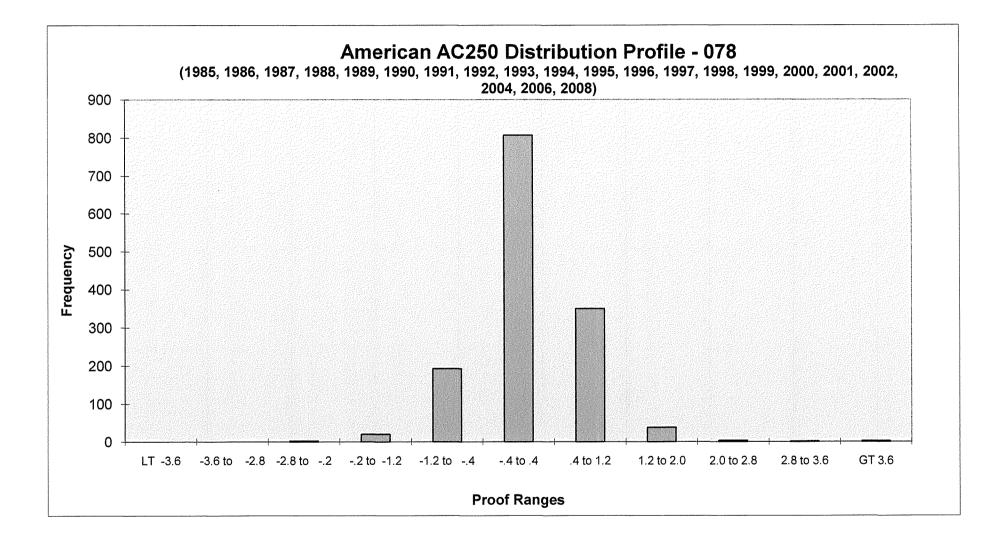
Code & Year:	1990	Code & Year:	1991	Code & Year:	1992	Code & Year:	1993	Code & Year:	1994
Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number
	Tumber	LT -3.6	0	LT -3.6	0	LT -3.6	0	LT -3.6	0
LT -3.6 -3.6 to -2.8		-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2		-2.8 to2	0	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0
-2.0 to -1.2		2 to -1.2	7	2 to -1.2	1	2 to -1.2	1	2 to -1.2	1
-1.2 to4	15	-1.2 to4	24	-1.2 to4	7	-1.2 to4	14	-1.2 to4	5
	42	4 to .4	18	4 to .4	13	4 to .4	13	4 to .4	37
4 to .4	42	.4 to 1.2	1	.4 to 1.2	10	.4 to 1.2	0	.4 to 1.2	6
.4 to 1.2	2	1.2 to 2.0		1.2 to 2.0	0	1.2 to 2.0	4	1.2 to 2.0	1
1.2 to 2.0		2.0 to 2.8		2.0 to 2.8	1	2.0 to 2.8	0	2.0 to 2.8	0
2.0 to 2.8	1	the second s			<u>,</u>	2.8 to 3.6		2.8 to 3.6	
2.8 to 3.6	1	2.8 to 3.6	0	2.8 to 3.6	0	L		the second se	
GT 3.6	0	GT 3.6	0	GT 3.6	0	GT 3.6	0	GT 3.6	
Total	80	Total	50	Total	32	Total	32	Total	50

Meter Code 078 American AC250

Code & Year:	1995	Code & Y
Data Range	Number	Data Ra
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -
-2.8 to2	0	-2.8 to
2 to -1.2	0	2 to -1.2
-1.2 to4	8	-1.2 to
4 to .4	43	4 to .4
.4 to 1.2	25	.4 to 1.2
1.2 to 2.0	2	1.2 to 2.0
2.0 to 2.8	0	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	2	GT 3.6
Total	80	Total

/ear:	1996	Code & `
ange	Number	Data Ra
	0	LT -3.6
-2.8	0	-3.6 to
.2	0	-2.8 to
2	0	2 to -1
.4	5	-1.2 to
	53	4 to .4
	21	.4 to 1.2
)	1	1.2 to 2.0
) 3 3	0	2.0 to 2.0
3	0	2.8 to 3.0
	0	GT 3.6
	80	Total

Code & Year:	1997
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	8
4 to .4	50
.4 to 1.2	20
1.2 to 2.0	2
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

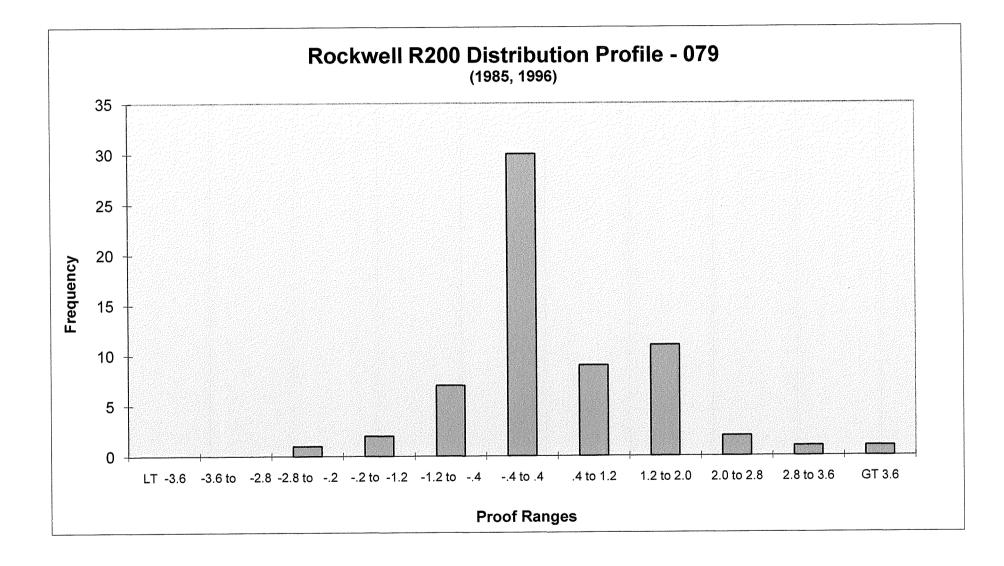

Code & Year:	1998
	1330
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	5
4 to .4	50
.4 to 1.2	23
1.2 to 2.0	2
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	1999
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	9
4 to .4	51
.4 to 1.2	20
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	80

Code & Year:	2000	Code & Year:	2001	Code & Year:	2002	Code & Year:	2004	Code & Year:	2006
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	0								
-2.8 to2	0	-2.8 to2	1	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0
2 to -1.2	0								
-1.2 to4	5	-1.2 to4	3	-1.2 to4	2	-1.2 to4	4	-1.2 to4	3
4 to .4	55	4 to .4	49	4 to .4	39	4 to .4	25	4 to .4	40
.4 to 1.2	17	.4 to 1.2	27	.4 to 1.2	9	.4 to 1.2	40	.4 to 1.2	32
1.2 to 2.0	3	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	10	1.2 to 2.0	5
2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	1	2.0 to 2.8	0
2.8 to 3.6	0								
GT 3.6	0								
Total	80	Total	80	Total	50	Total	80	Total	80

Meter Code 078 American AC250

Code & Year:	2008	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	2
2 to -1.2	0	2 to -1.2	20
-1.2 to4	3	-1.2 to4	193
4 to .4	47	4 to .4	807
.4 to 1.2	29	.4 to 1.2	350
1.2 to 2.0	1	1.2 to 2.0	38
2.0 to 2.8	0	2.0 to 2.8	3
2.8 to 3.6	0	2.8 to 3.6	1
GT 3.6	0	GT 3.6	2
Total	80	Total	1416



Rockwell R200	Test Year 2010							
200 CFH	Control Group-Installed Year							
Code: 079	1985	1996						
Sample Plan	Single	Single						
Sample Size	32	32						
Original Population	171	146						
# of Slow Failures	1	0						
# of Fast Failures	4	0						
Total Failures:	5	0						
Accept Level	5	5						
Reject Level	6	6						
Pass/ Fail?	Pass	Pass						
If Failed - Remove By:	NA	NA						
Statistical Data:								
Mean (Average Proof)	0.864063	-0.05781						
Median	0.825	-0.125						
Standard Deviation	1.241113	0.805136						
Sample Variance	1.54036	0.648243						
Skewness	0.260869	0.701878						
Minimum	-2.35	-1.7						
Maximum	4.25	2						
Count	32	32						
Confidence Level(95.0%)	0.447469	0.290282						

Meter Code 079 Rockwell R200

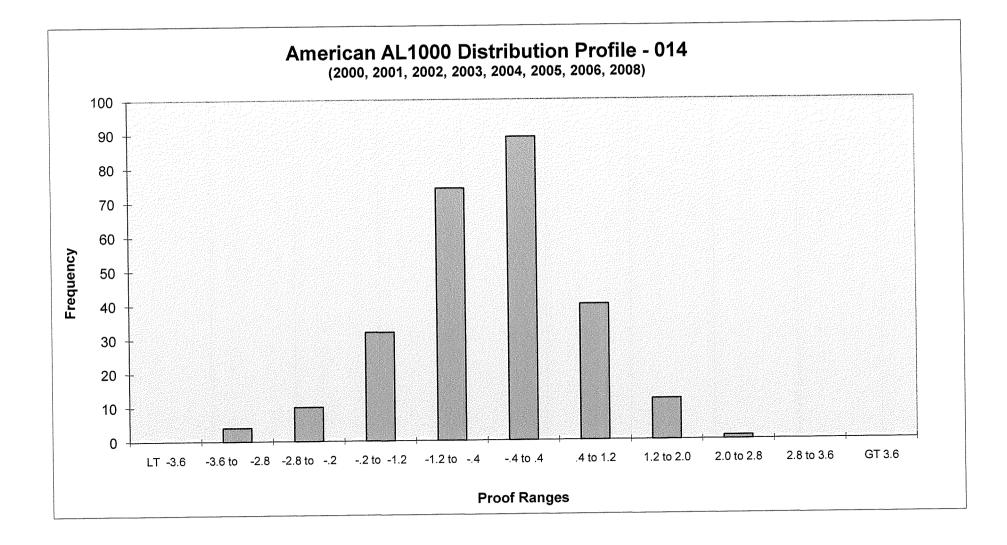
Code & Year:	1985	Code & Year:
Data Range	Number	Data Range
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	1	-2.8 to2
2 to -1.2	0	2 to -1.2
-1.2 to4	1	-1.2 to4
4 to .4	12	4 to .4
.4 to 1.2	6	.4 to 1.2
1.2 to 2.0	8	1.2 to 2.0
2.0 to 2.8	2	2.0 to 2.8
2.8 to 3.6	1	2.8 to 3.6
GT 3.6	1	GT 3.6
Total	32	Total

	1996	Code & Year:	Total
;	Number	Data Range	Number
	0	LT -3.6	0
	0	-3.6 to -2.8	0
	0	-2.8 to2	1
	2	2 to -1.2	2
	6	-1.2 to4	7
	18	4 to .4	30
	3	.4 to 1.2	9
	3	1.2 to 2.0	11
	0	2.0 to 2.8	2
	0	2.8 to 3.6	1
	0	GT 3.6	1
	32	Total	64

American AL1000	Test Year 2010								
1000 CFH		Control Gro	up-Installed Ye	ar					
Code: 014	2000 2001 2002 2003					2005	2006	2008	
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single	
Sample Size	20*	20	8	32	32	50	50	50	
Original Population	96	145	28	154	280	361	337	456	
# of Slow Failures	1	0	0	3	2	5	1	2	
# of Fast Failures	0	1	0	0	0	0	0	0	
Total Failures:	1	1	0	3	2	5	1	2	
Accept Level	3	3	1	5	5	7	7	7	
Reject Level	4	4	2	6	6	8	8	8	
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA	NA	
Statistical Data:									
Mean (Average Proof)	-0.39	0.6125	-0.86875	-0.73594	-0.34844	-0.512	-0.286	-0.252	
Median	-0.5	0.65	-0.5	-0.725	-0.35	-0.35	-0.1	-0.275	
Standard Deviation	0.975165	0.869191	0.703023	0.984741	0.843713	1.04073	0.910093	0.992932	
Sample Variance	0.950947	0.755493	0.494241	0.969715	0.711852	1.083118	0.828269	0.985914	
Skewness	-0.00942	-0.15662	-1.09445	-0.16841		-0.47562	-0.68208	-0.00138	
Minimum	-2.55	-1.1	-2	-2.9	-2.65	-3.05	-3.15	-2.45	
Maximum	1.4	2.2	-0.25	1.2	1.2	1.1	1.55	1.8	
Count	20	20	8	32	32	50	50	50	
Confidence Level(95.0%)	0.456391	0.406794	0.587742	0.355037	0.304191	0.295772	0.258646	0.282188	

* Control group in 10th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to determine if group passed/failed in it's last year of service.

Meter Code 014 American AL1000

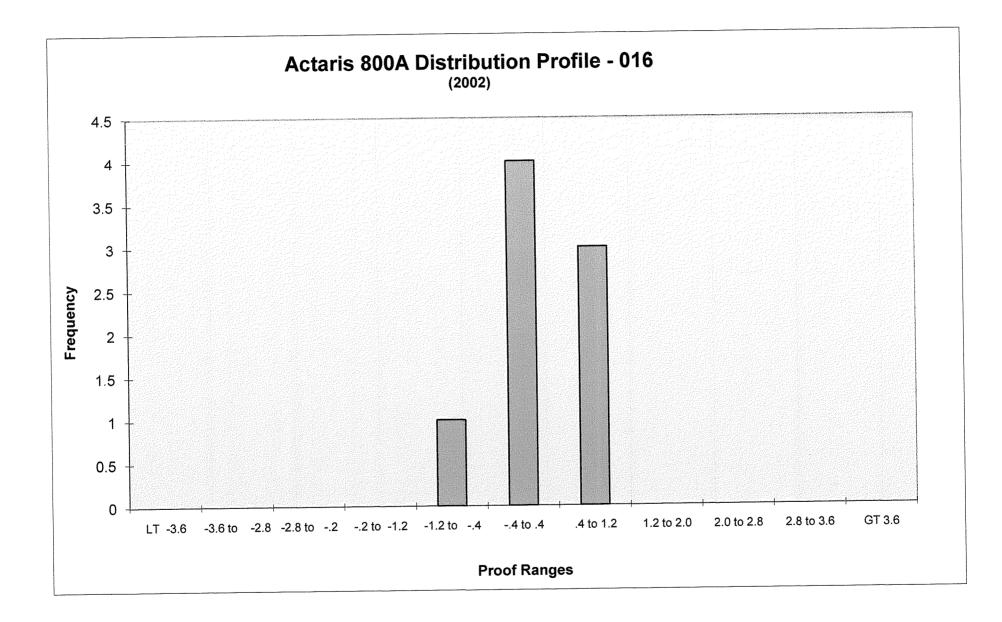

Code & Year:	2000	Code & Year:
Data Range	Number	Data Range
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	1	-2.8 to2
2 to -1.2	3	2 to -1.2
-1.2 to4	7	-1.2 to4
4 to .4	6	4 to .4
.4 to 1.2	1	.4 to 1.2
1.2 to 2.0	2	1.2 to 2.0
2.0 to 2.8	0	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	20	Total
Total	20	TOLAI

2001	Code & Year:	2002
Number	Data Range	Number
0	LT -3.6	0
0	-3.6 to -2.8	0
0	-2.8 to2	0
0	2 to -1.2	2
3	-1.2 to4	4
6	4 to .4	2
6	.4 to 1.2	0
4	1.2 to 2.0	0
1	2.0 to 2.8	0
0	2.8 to 3.6	0
0	GT 3.6	0
20	Total	8

Code & Year:	2003
Data Range	Number
LT -3.6	0
-3.6 to -2.8	2
-2.8 to2	1
2 to -1.2	6
-1.2 to4	13
4 to .4	6
.4 to 1.2	4
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

Code & Year:	2004
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	2
2 to -1.2	2
-1.2 to4	10
4 to .4	15
.4 to 1.2	3
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

Code & Year:	2005	Code & Year:	2006	Code & Year:	2008	Code & Year:	Total
Data Range	Number						
LT -3.6	0						
-3.6 to -2.8	1	-3.6 to -2.8	1	-3.6 to -2.8	0	-3.6 to -2.8	4
-2.8 to2	4	-2.8 to2	0	-2.8 to2	2	-2.8 to2	10
2 to -1.2	6	2 to -1.2	6	2 to -1.2	7	2 to -1.2	32
-1.2 to4	13	-1.2 to4	12	-1.2 to4	12	-1.2 to4	74
4 to .4	15	4 to .4	21	4 to .4	18	4 to .4	89
.4 to 1.2	11	.4 to 1.2	8	.4 to 1.2	7	.4 to 1.2	40
1.2 to 2.0	0	1.2 to 2.0	2	1.2 to 2.0	4	1.2 to 2.0	12
2.0 to 2.8	Ō	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	1
2.8 to 3.6	1 O	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6		GT 3.6	0	GT 3.6	0	GT 3.6	0
Total	50	Total	50	Total	50	Total	262

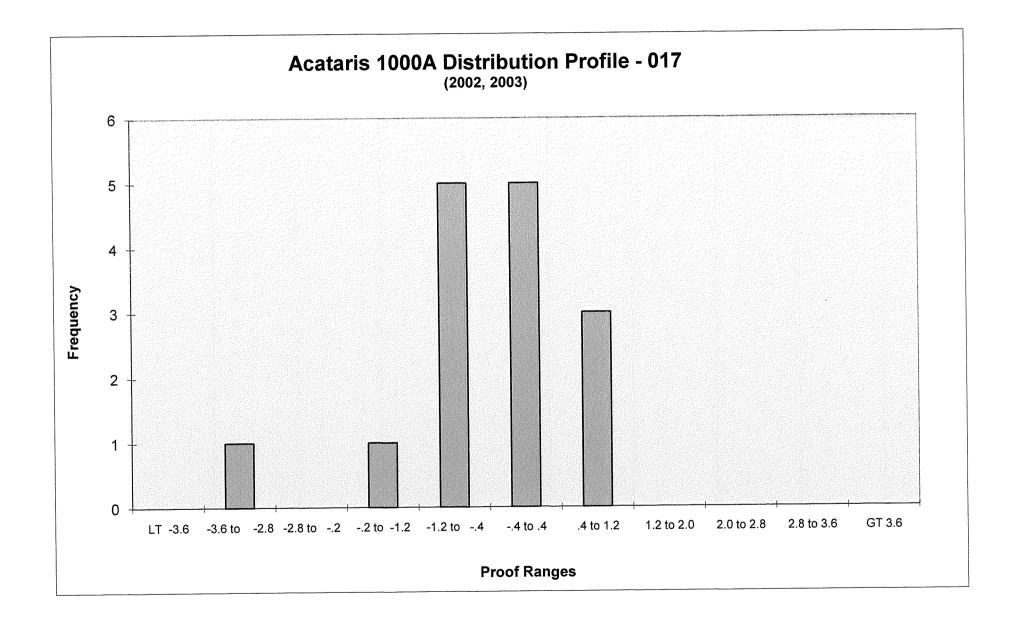


Actaris 800A	Test Year 2010								
800 CFH	Control Group-Installed Year								
Code 016	2002								
Sample Plan	Single								
Sample Size	8								
Original Population	49								
# of Slow Failures	0								
# of Fast Failures	0				1				
Total Failures:	0								
Acept Level	1								
Reject Level	2								
Pass / Fail ?	Pass								
If Failed - Remove By:	NA								
Statistical Data:									
Mean (Average Proof)	0.34375								
Median	0.275								
Standard Deviation	0.691498								
Sample Variance	0.47817								
Skewness	-0.68198								
Minimum	-0.95								
Maximum	1.15								
Count	8								
Confidence Level(95.0%)	0.578107			<u> </u>		<u> </u>	I	<u> </u>	<u> </u>

. .

Meter Code 016 Actaris 800A

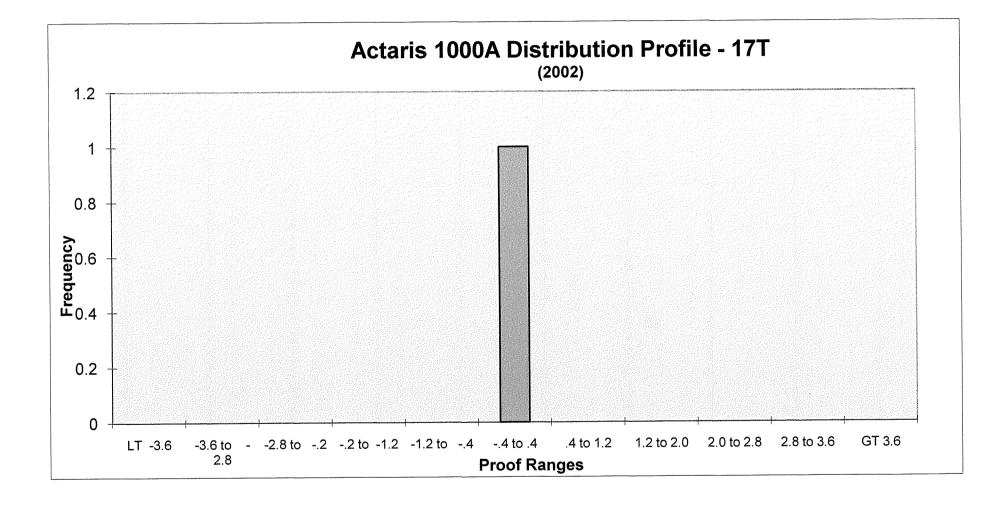
Code & Year:	2002	Code & Year:	Total
Code à Tear.	2002		
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	0
2 to -1.2	0	2 to -1.2	0
-1.2 to4	1	-1.2 to4	1
4 to .4	4	4 to .4	4
.4 to 1.2	3	.4 to 1.2	3
1.2 to 2.0	0	1.2 to 2.0	0
2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	8	Total	8



Actaris 1000A	Test Year 2010				 			
1000 CFH		Control Grou	up-Installed Ye	ar	 			
Code 017	2002	2003			 			
Sample Plan	Single	Single						
Sample Size	13	2						
Original Population	56	6						
# of Slow Failures	1	0						
# of Fast Failures	0	0			 			
Total Failures:	1	0						
Accept Level	2	0						
Reject Level	3	1						
Pass / Fail ?	Pass	Pass						
If Failed - Remove By:	NA	NA						
Statistical Data:								
Mean (Average Proof)	-0.45	-0.15						
Median	-0.2	-0.15						
Standard Deviation	0.969536	1.06066						
Sample Variance	0.94	1.125						
Skewness	-1.4313	NA						
Minimum	-2.95	-0.9						
Maximum	0.7	0.6						
Count	13	2						
Confidence Level(95.0%)	0.585885	9.529654			L	<u> </u>	<u> </u>	1

Meter Code 017 Actaris 1000A

Code & Year:	2002	Code & Year:	2003
Data Range	Number	Data Range	Numbe
LT -3.6	0	LT -3.6	
-3.6 to -2.8	1	-3.6 to -2.8	
-2.8 to2	0	-2.8 to2	
2 to -1.2	1	2 to -1.2	
-1.2 to4	4	-1.2 to4	
4 to .4	5	4 to .4	
.4 to 1.2	2	.4 to 1.2	
1.2 to 2.0	0	1.2 to 2.0	
2.0 to 2.8	0	2.0 to 2.8	
2.8 to 3.6	0	2.8 to 3.6	
GT 3.6	0	GT 3.6	
Total	13	Total	


003	Code & Year:	Total
mber	Data Range	Number
0	LT -3.6	0
0	-3.6 to -2.8	1
0	-2.8 to2	0
0	2 to -1.2	1
1	-1.2 to4	5
0	4 to .4	5 3
1	.4 to 1.2	3
0	1.2 to 2.0	0
0	2.0 to 2.8	0
0	2.8 to 3.6	0
0	GT 3.6	0
2	Total	15

Actaris 1000A	Test Year 2010			 	 	
1000 CFH	Co	ntrol Group-Installe	d Year	 	 	
Code 17T	2002				 	
Sample Plan	Single					
Sample Size	1					
Original Population	1					
# of Slow Failures	o					
# of Fast Failures	0			 	 	
Total Failures:	0					
Accept Level	0					
Reject Level	1					
Pass / Fail ?	Pass					
If Failed - Remove By:	Exhaust					
Statistical Data:						
Mean (Average Proof)	0.4					
Median	0.4					
Standard Deviation	NA					
Sample Variance	NA					
Skewness	NA					
Minimum	0.4					
Maximum	0.4					
Count	1					
Confidence Level(95.0%)	NA			 <u> </u>		<u> </u>

Meter Code 17T Actaris 1000A

Code & Year:	2002	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	0
2 to -1.2	0	2 to -1.2	0
-1.2 to4	0	-1.2 to4	0
4 to .4	1	4 to .4	1
.4 to 1.2	0	.4 to 1.2	0
1.2 to 2.0	0	1.2 to 2.0	0
2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	1	Total	1

American AL 1400		Control Grou	p-Installed Ye			0005	2006	T	
Code: 019	2000	2001	2002	2003	2004	2005			
	Single	Single	Single	Single	Single	Single	Single		
Sample Plan	1	2	2	2	8	8	8		
Sample Size	,						<u>ar</u>		
Original Population	1*	7	6	11	20	22	25		
			0	0	0	0	0		
# of Slow Failures	0	0	0	0	0	0	0		
# of Fast Failures	0	0	0	0	0	0	0		
Total Failures:	0	0	0	Ŭ	-				
		_		0	1	1	1		
Accept Level	0	0	0	1	2	2	2		
Reject Level	1	1	1	Pass	Pass	Pass	Pass		
Pass / Fail?	Pass	Pass	Pass	Pa55	1 455	-			
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA		
Statistical Data:					0 74075	-0.175	-0.375		
Mean (Average Proof)	-0.2	0.125	-0.25	-0.075	-0.71875	-0.175	-0.010		
Median	-0.2	0.125	-0.25	-0.075	-0.825		0.966954		
Standard Deviation	NA	0.388909		2.510229			0.900934		
1	NA	0.15125	0.32	6.30125			-0.68671		
Sample Variance	NA	NA	NA				-0.00071		
Skewness	-0.2		-0.65		-1.45		-1.9	1	
Minimum	-0.2		0.15		0.4		0.75	1	
Maximum	1	2			8	8	-	1	
Count	· · ·	3.494206	5.082482	22.55351	0.539003	0.715344	0.808394	nnlo size h	
Confidence Level(95.0%)	h vear of ser	vice - maxin	num service	period - all	meters to t	be removed.	rtested. Sar	Tiple Size b	2350 01
<u>Confidence Level(95.0%)</u> NA 3.494206 5.082482 22.55351 0.539003 0.710044 diseted. Sample size based on * Control group in 10th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to determine if group passed/failed in it's last year of service.									

Meter Code

2001

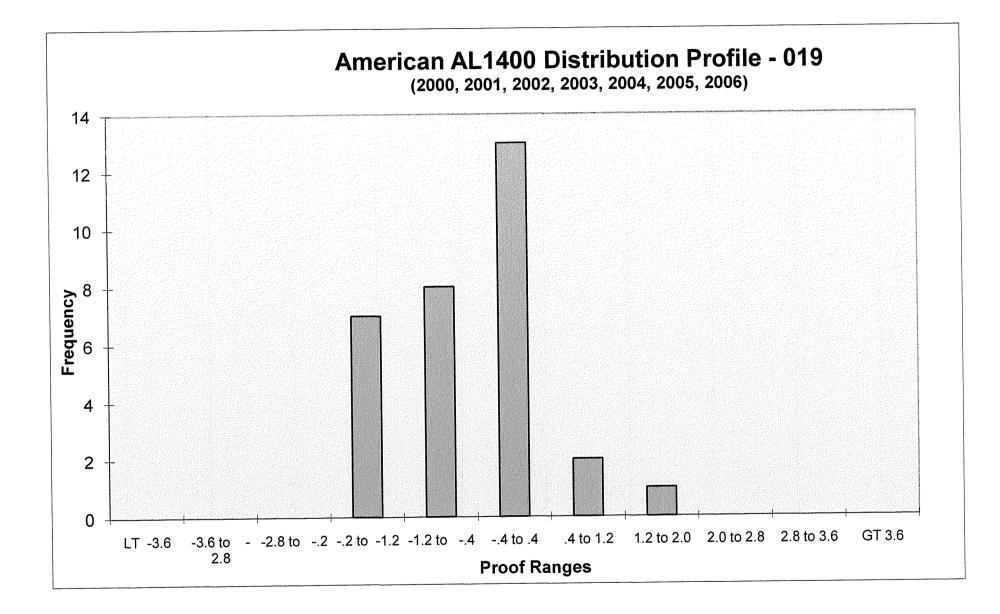
Number

American AL 1400

Code & Year:	2000	Code & Year:
Data Range	Number	Data Range
LT -3.6	0	LT -3.6
-3.6 to -2.8	0	-3.6 to -2.8
-2.8 to2	0	-2.8 to2
2 to -1.2	0	2 to -1.2
-1.2 to4	0	-1.2 to4
4 to .4	1	4 to .4
.4 to 1.2	0	.4 to 1.2
1.2 to 2.0	0	1.2 to 2.0
2.0 to 2.8	0	2.0 to 2.8
2.8 to 3.6	0	2.8 to 3.6
GT 3.6	0	GT 3.6
Total	1	Total

	Code & Year:	2002
	Couc & rour.	
er	Data Range	Number
0	LT -3.6	0
0	-3.6 to -2.8	0
0	-2.8 to2	0
0	2 to -1.2	0
	-1.2 to4	1
2	4 to .4	1
0 2 0	.4 to 1.2	0
0	1.2 to 2.0	0
0	2.0 to 2.8	0
0	2.8 to 3.6	C
0 0 0 2	GT 3.6	0
2	Total	2

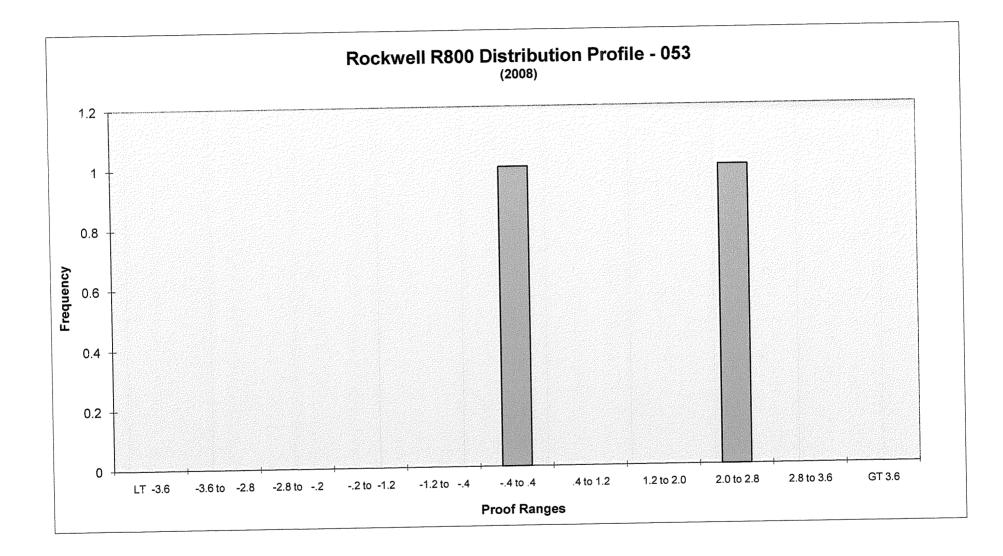
019


Code & Year:	2003
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	0
4 to .4	C
.4 to 1.2	
1.2 to 2.0	(
2.0 to 2.8	(
2.8 to 3.6	(
GT 3.6	(
Total	

Code & Year:	2004
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	2
-1.2 to4	4
4 to .4	2 4 2 0
.4 to 1.2	0
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	8

Γ	Code & Year:	2005	Code
Ī			
	Data Range	Number	Data
t	LT -3.6	0	LT -3
I	-3.6 to -2.8	0	-3.6 t
	-2.8 to2	0	-2.8 t
	2 to -1.2	1	2 to
	-1.2 to4	2	-1.2 t
	4 to .4	4	4 to
	.4 to 1.2	0	.4 to
	1.2 to 2.0	1	1.2 to
	2.0 to 2.8	0	2.0 to
	2.8 to 3.6	0	2.8 to
	GT 3.6	0	GT 3
	Total	8	Tota

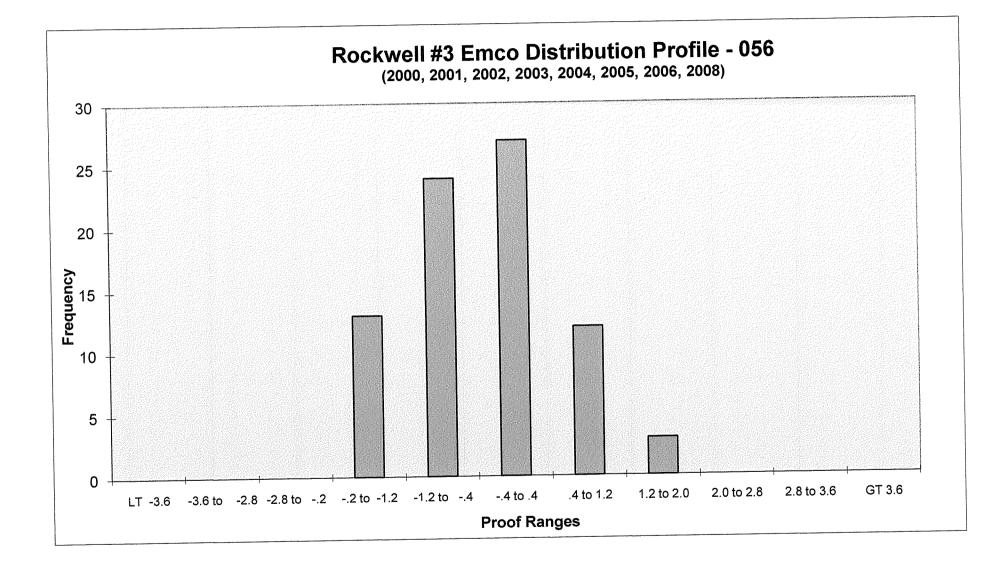
Code & Year:	2006
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	2
-1.2 to4	1
4 to .4	0 0 2 1 3 2 0
.4 to 1.2	2
1.2 to 2.0	
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	8


Code & Year:	Total		
	Number		
Data Range	Number		
LT -3.6	0		
-3.6 to -2.8	0		
-2.8 to2	0		
2 to -1.2	7		
-1.2 to4	8		
4 to .4	13		
.4 to 1.2	13 2		
1.2 to 2.0	1		
2.0 to 2.8	0		
2.8 to 3.6	0		
GT 3.6	0		
Total	31		

Rockwell R800	Test Year 2010								
800 CFH	Control Group-Installed Year								
Code: 053	2008								
Sample Plan	Single								
Sample Size	2								
Original Population	3								
# of Slow Failures	0								
# of Fast Failures	1								
Total Failures:	1								
Accept Level	0								
Reject Level	1								
Pass / Fail?	Fail								
	6/1/2012								
If Failed - Remove By:	NA								
Statistical Data:									
Mean (Average Proof)	1.1								
Median	1.1								
Standard Deviation	1.343503								
Sample Variance	1.805								
Skewness	NA								
Minimum	0.15								
Maximum	2.05								
Count	2								
Confidence Level(95.0%)	12.07089				L	L	<u> </u>	<u> </u>	<u> </u>

Meter Code 053 Rockwell R800

Code & Year:	2008	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	0
2 to -1.2	0	2 to -1.2	0
-1.2 to4	0	-1.2 to4	0
4 to .4	1	4 to .4	1
.4 to 1.2	0	.4 to 1.2	0
1.2 to 2.0	0	1.2 to 2.0	0
2.0 to 2.8	1	2.0 to 2.8	1
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	2	Total	2



Rockwell #3 Emco	Test Year 2010								
1200 CFH		Control Grou	p-Installed Yea	ar	T				
Code: 056	2000	2001	2002	2003	2004	2005	2006	2008	
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single	
Sample Size	8*	8	8	8	13	13	8	13	
Original Population	26	21	30	34	85	59	47	71	
# of Slow Failures	0	0	o	0	0	о	0	0	
# of Fast Failures	0	0	0	0	0	0	0	0	
Total Failures:	0	0	0	0	0	0	0	0	
Assert Loval	1	1	1	1	1	2	1	2	
Accept Level	2	2	2	2	2	3	2	3	
Reject Level Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA	NA	
Statistical Data:					0.040004	0.04000	-0.6625	-0.48462	
Mean (Average Proof)	-0.50625	-0.4375	-0.4	-0.65625	0.019231	-0.21923	-0.6625		
Median	-0.7	-0.45			-0.1	-0.05 0.875961	0.995257	0.897539	
Standard Deviation	1.103384	0.866747	0.771825					0.805577	1
Sample Variance	1.217455	0.75125	0.595714			0.767308			
Skewness	1.33506	-0.73269				-0.4038	0.316102 1.95-		
Minimum	-2	-2	-1.7	-1.6		-2			
Maximum	1.85	0.5				1	1.05		
Count	8	8	8	8	13		-	1	1
Confidence Level(95.0%)	0.922452	0.724618	0.645262	0.574642	0.635053	0.529338		0.342370	1

* Control group in 10th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to determine if group passed/failed in it's last year of service.

Meter Code 056 Rockwell #3 Emco

			2001	Code & Year:	2002	Code & Year:	2003	Code & Year:	2004
Code & Year:	2000	Code & Year:	2001	Code & real.					
Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0	LT -3.6	0	LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0
2 to -1.2	1	2 to -1.2	2	2 to -1.2	1	2 to -1.2	1	2 to -1.2	1
-1.2 to4	4	-1.2 to4	2	-1.2 to4	3	-1.2 to4	4	-1.2 to4	2 6
4 to .4	2	4 to .4	2	4 to .4	3	4 to .4	2	4 to .4	6
.4 to 1.2	0	.4 to 1.2	2	.4 to 1.2	1	.4 to 1.2	1	.4 to 1.2	2 2 0
1.2 to 2.0	1	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	2
2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	
2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0	GT 3.6	0	GT 3.6	0	GT 3.6	0
Total	8	Total	8	Total	8	Total	8	Total	13
Code & Year:	2005	Code & Year:	2006	Code & Year:	2008	Code & Year:	Total		
Data Range	Number	Data Range	Number	Data Range	Number	Data Range	Number		
LT -3.6	0	LT -3.6	0	LT -3.6	0	LT -3.6	0		
-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0	-3.6 to -2.8	0		
-2.8 to2	0	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0		
2 to -1.2	1	2 to -1.2	3	2 to -1.2	3	2 to -1.2	13		
-1.2 to4	5	-1.2 to4	1	-1.2 to4	3	-1.2 to4	24		
4 to .4	4	4 to .4	3	4 to .4	5	4 to .4	27		
		44-40	1	.4 to 1.2	2	.4 to 1.2	12		
.4 to 1.2	3	.4 to 1.2		and the second					
	3	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	3		
.4 to 1.2			0	1.2 to 2.0 2.0 to 2.8	0	2.0 to 2.8	0		
.4 to 1.2 1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0 2.0 to 2.8 2.8 to 3.6	0 0	2.0 to 2.8 2.8 to 3.6	0		
.4 to 1.2 1.2 to 2.0 2.0 to 2.8	0	1.2 to 2.0 2.0 to 2.8	0	1.2 to 2.0 2.0 to 2.8	0	2.0 to 2.8	0		

Rockwell R750	Test Year 2010)							
750 CFH		Control Gro	up-Installed Ye	ear					
Code: 058	2000	2001	2002	2003	2004	2005	2006	2008	
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single	
Sample Size	13*	32	13	20	32	50	50	50	
Original Population	90	166	69	150	21	373	386	435	
# of Slow Failures	0	0	o	1	o	о	1	0	
# of Fast Failures	0	1	0	2	0	1	1	0	
Total Failures:	0	1	0	3	0	1	2	0	í
Accept Level	2	5	2	3	5	7	7	7	
Reject Level	3	6	3	4	6	8	8	8	
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA	NA	
Statistical Data:									
Mean (Average Proof)	-0.50385	0.40625	0.069231	0.6175	0.115625	0.279	0.064	0.451	
Median	-0.25	0.15	-0.05	0.725	-0.1	0.15	0.175	0.5	
Standard Deviation	0.766611	0.878484	0.966423		0.996562	1.25808	0.980319	0.713177	t
Sample Variance	0.587692	0.771734	0.933974		0.993135		0.961024	0.508621	
Skewness	-0.43342	0.735135	0.460931	-0.51647	0.316787	3.464993	-1.79461	-0.47961	1
Minimum	-1.8	-1.5		-2.15	-1.8	-1.75	-4.45		
Maximum	0.6	2.75	1.75		1.9		2.3		1
Count	13	32	13	20		50	50	50	1
Confidence Level(95.0%)	0.463258	0.316727	0.584004	0.522444	0.359299	0.357542	0.278603	0.202683	1

Confidence Level(95.0%) 0.463258 0.316727 0.584004 0.522444 0.359299 0.357542 0.278603 0.202683 * Control group in 10th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to determine if group passed/failed in it's last year of service.

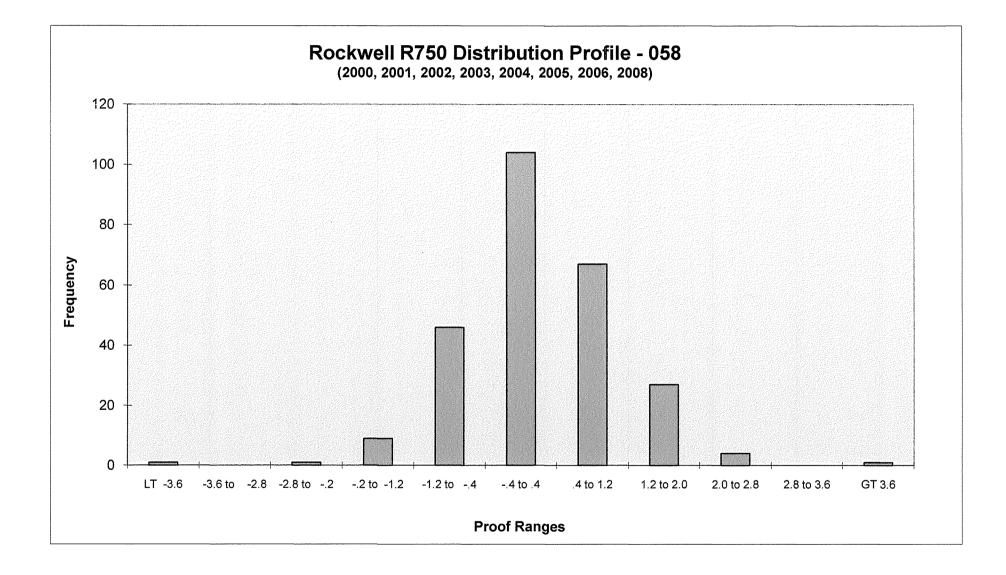
Meter Code 058 Rockwell R750

Code & Year:	2000
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	3
-1.2 to4	2
4 to .4	7
.4 to 1.2	1
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	13

Code & Year:

Data Range

LT -3.6 -3.6 to -2.8 -2.8 to -.2 -.2 to -1.2 -1.2 to -.4 -.4 to .4 .4 to 1.2 1.2 to 2.0 2.0 to 2.8 2.8 to 3.6 GT 3.6 Total


2001	Code & Year:	2002
Number	Data Range	Number
0	LT -3.6	(
0	-3.6 to -2.8	(
0	-2.8 to2	(
1	2 to -1.2	
2	-1.2 to4	4
18	4 to .4	4
5	.4 to 1.2	
5	1.2 to 2.0	
1	2.0 to 2.8	(
0	2.8 to 3.6	(
0	GT 3.6	
32	Total	1:

Code & Year:	2003
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	1
2 to -1.2	0
-1.2 to4	2 5
4 to .4	5
.4 to 1.2	7
1.2 to 2.0	3
2.0 to 2.8	2
2.8 to 3.6	0
GT 3.6	0
Total	20

00014400003

Code & Year:	2004
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	1
-1.2 to4	8
4 to .4	13
.4 to 1.2	4
1.2 to 2.0	6
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	32

Code & Year:	2005	Code & Year:	2006	Code & Year:	2008	Code & Year:	Total
Data Range	Number						
LT -3.6	0	LT -3.6	1	LT -3.6	0	LT -3.6	1
-3.6 to -2.8	0						
-2.8 to2		-2.8 to2	0	-2.8 to2	0	-2.8 to2	1
2 to -1.2	1	2 to -1.2	1	2 to -1.2	1	2 to -1.2	9
-1.2 to4	13	-1.2 to -4	10	-1.2 to4	5	-1.2 to4	46
-,4 to .4	18	4 to .4	22	4 to .4	17	4 to .4	104
.4 to 1.2	14	.4 to 1.2	14	.4 to 1.2	20	.4 to 1.2	67
1.2 to 2.0	3	1.2 to 2.0	1	1.2 to 2.0	7	1.2 to 2.0	27
2.0 to 2.8		2.0 to 2.8		2.0 to 2.8	0	2.0 to 2.8	4
2.8 to 3.6		2.8 to 3.6	0	2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6		GT 3.6		GT 3.6	0	GT 3.6	1
Total	50	Total	50	Total	50	Total	260

American AL 800	Test Year 2010							
800 CFH		Control Gro	oup-Installed Y	ear				
Code: 076	2000	2001	2002	2003	2004	2005	2006	2008
Sample Plan	Single	Single	Single	Single	Single	Single	Single	Single
Sample Size	2*	8	2	13	20	8	13	20
Original Population	8	28	10	62	97	31	73	98
# of Slow Failures	0	0	0	0	2	0	0	о
# of Fast Failures	0	0	0	0	0	0	0	0
Total Failures:	0	0	0	0	2	0	0	0
Accept Level	o	1	o	2	3	1	2	3
Reject Level	1	2	1	3	4	2	3	4
Pass / Fail?	Pass	Pass	Pass	Pass	Pass	Pass	Pass	Pass
If Failed - Remove By:	Exhaust	NA	NA	NA	NA	NA	NA	NA
Statistical Data:								
Mean (Average Proof)	-0.8	-0.1625	-0.375	-0.08846	-0.97	-0.5125	-0.24615	-0.07
Median	-0.8	-0.1	-0.375	0.05	-1.1	-0.625	-0.1	0.075
Standard Deviation	0.494975	0.957583	0.318198	0.581361	0.953994	0.778621	0.69506	0.632331
Sample Variance	0.245	0.916964	0.10125	0.337981	0.910105	0.60625	1	0.399842
Skewness	NA	-0.70681	NA	-1.08968	0.226121	0.017515		-0.14075
Minimum	-1.15	-1.9	-0.6	-1.5	-2.6	-1.7	-1.6	-1.15
Maximum	-0.45	0.95	-0.15	0.8	0.8	0.6		0.9
Count	2	8	2	13	20	8	13	20
Confidence Level(95.0%)	4.447172	0.800559	2.858896	0.351313	0.446483	0.650943	0.420021	0.29594

Year 2010

Meter Code 076 American AL800

Code & Year:	1996
Data Range	Number
LT -3.6	
	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	0
4 to .4	3
.4 to 1.2	4
1.2 to 2.0	1
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	8

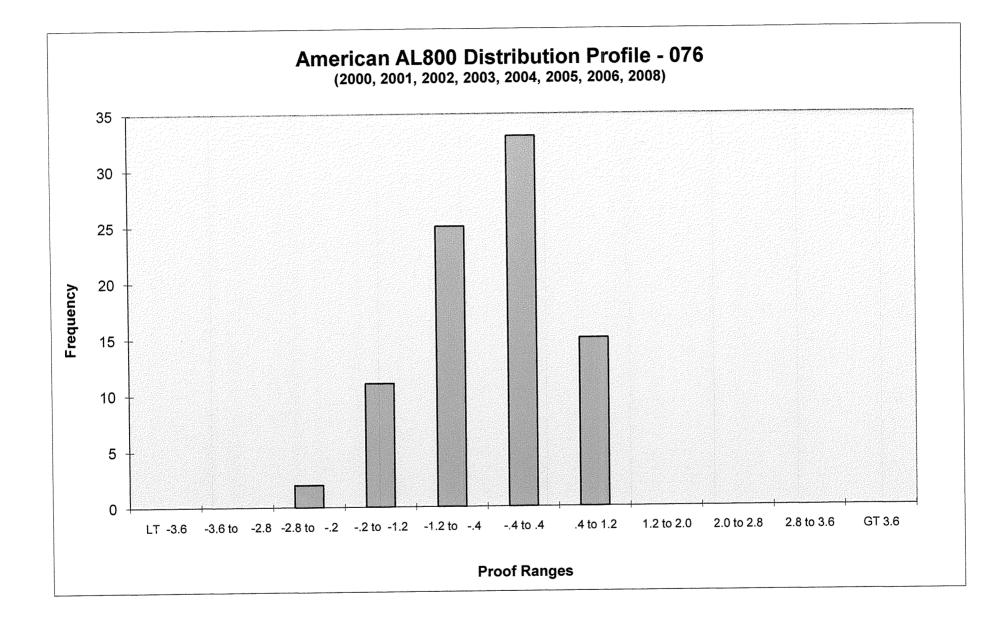
Code & Year:	2000	Coc
Data Range	Number	
LT -3.6		
-3.6 to -2.8	0	LT -3.6
-2.8 to2	0	-2.8
2 to -1.2	0	2
-1.2 to4	2	-1.2
4 to .4	0	- 4
.4 to 1.2	0	.4 t
1.2 to 2.0	0	1.2
2.0 to 2.8	0	2.0
2.8 to 3.6	0	2.8
GT 3.6	0	GT
Total	2	Tot

Code & Year:	2001
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	1
-1.2 to4	1 2 2 3
4 to .4	2
.4 to 1.2	3
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	8

Code & Year:	2002
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	1
4 to .4	1
.4 to 1.2	0
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	2

Code & Year:	2003
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	1
-1.2 to4	1
4 to .4	9
.4 to 1.2	2
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	13

Code & Year:	2001	Code & Year:	2004	Code & Year:	2005	Code & Year:	2006	Code & Year:	2008
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	0								
-2.8 to2	0	-2.8 to2	2	-2.8 to2	0	-2.8 to2	0	-2.8 to2	0
2 to -1.2	0	2 to -1.2	7	2 to -1.2	1	2 to -1.2	1	2 to -1.2	0
-1.2 to4	0	-1.2 to4	6	-1.2 to4	4	-1.2 to4	4	-1.2 to4	5
4 to .4	0	4 to .4	3	4 to .4	2	4 to .4	5	4 to .4	11
.4 to 1.2	0	.4 to 1.2	2	.4 to 1.2	1	.4 to 1.2	3	.4 to 1.2	4
1.2 to 2.0	0								
2.0 to 2.8	0								
2.8 to 3.6	0								
GT 3.6	0								
Total	0	Total	20	Total	8	Total	13	Total	20

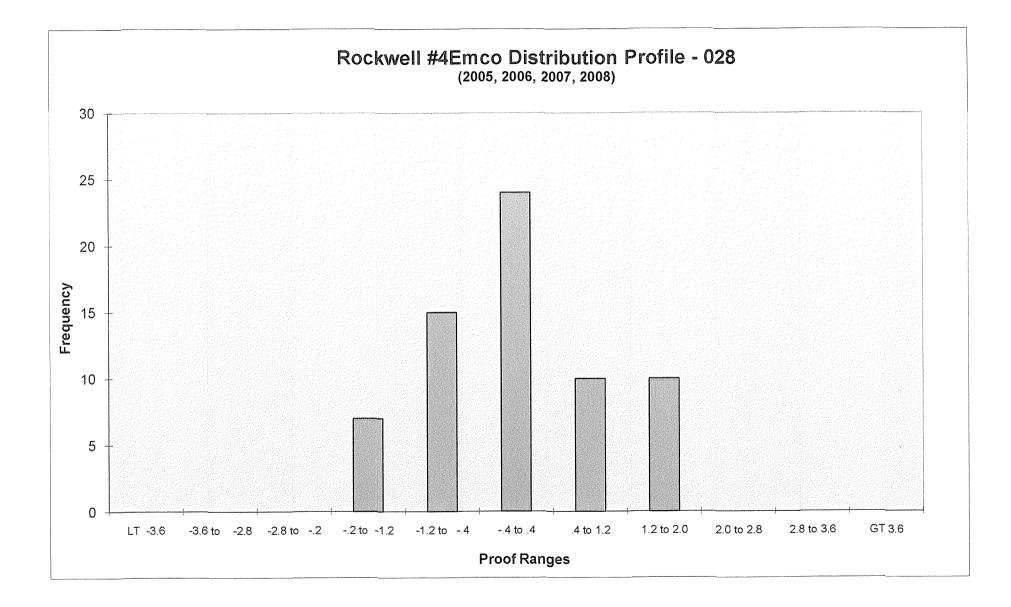

Year 2010

Meter Code 076 American AL800

0 86

Code & Year:	1996	Code & Year:	Total
Data Range	Number	Data Range	Number
LT -3.6	0	LT -3.6	0
-3.6 to -2.8	0	-3.6 to -2.8	0
-2.8 to2	0	-2.8 to2	2
2 to -1.2	0	2 to -1.2	11
-1.2 to4	0	-1.2 to4	25
4 to .4	3	4 to .4	33
.4 to 1.2	4	.4 to 1.2	15
1.2 to 2.0	1	1.2 to 2.0	0
2.0 to 2.8	0	2.0 to 2.8	0
2.8 to 3.6	0	2.8 to 3.6	0
GT 3.6	0	GT 3.6	0
Total	8	Total	86

Code & Year:	2001
Data Range	Number
LT -3.6	0
-3.6 to -2.8	0
-2.8 to2	0
2 to -1.2	0
-1.2 to4	0
4 to .4	0
.4 to 1.2	0
1.2 to 2.0	0
2.0 to 2.8	0
2.8 to 3.6	0
GT 3.6	0
Total	0

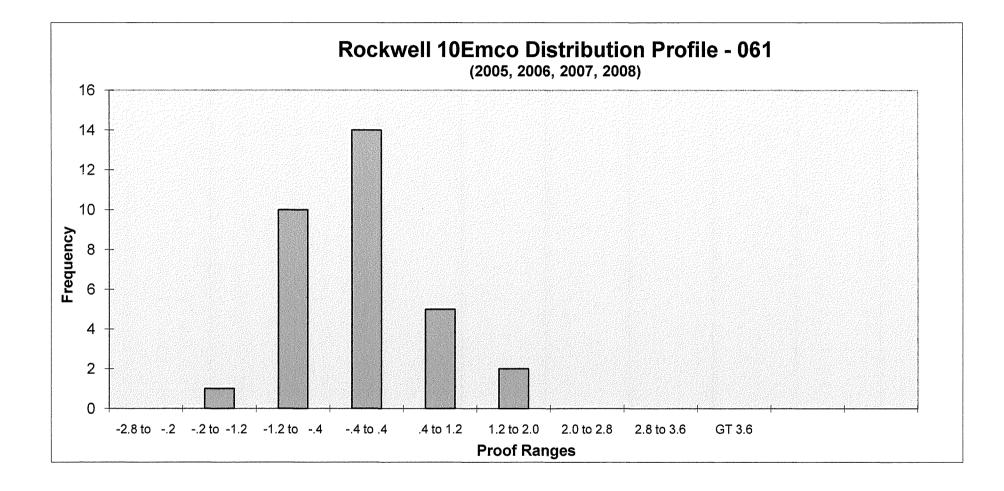


Rockwell #4 Emco	Test Year 201	0			 		
2250 CFH		Control Gro	oup-Installed Y	ear			
Code: 028	2005	2006	2007	2008			
Sample Plan	Single	Single	Single	Single			
Sample Size	13*	13	20	20			
Original Population	72	88	120	135			
# of Slow Failures	o	0	0	0			
# of Fast Failures	0	0	0	0			
Total Failures:	0	0	0	0			
Accept Level	2	2	3	3			
Reject Level	3	3	4	4			
Pass / Fail?	Pass	Pass	Pass	Pass			
If Failed - Remove By:	Exhaust	NA	NA	NA			
Statistical Data:							
Mean (Average Proof)	-0.03846	-0.15769	0.2675	-0.015			
Median	-0.35	0.05	-0.175	-0.275			
Standard Deviation	1.231387	0.700847	1.128725	0.987434			
Sample Variance	1.516314	0.491186	1.27402				
Skewness	0.129068	-0.5864	0.177772	0.271402			
Minimum	-1.7	-1.4	-2	-1.85			
Maximum	1.8	0.85	2	2			
Count	13	13	20	20			
Confidence Level(95.0%)	0.74412	0.423517	0.528259	0.462133	 		<u> </u>

* Control group in 5th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to dertermine if group passed/failed in it's last year of service.

Meter Code 028 Rockwell #4 Emco

Code & Year:	2005	Code & Year:	2006	Code & Year:	2007	Code & Year:	2008	Code & Year:	Total
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	0								
-2.8 to2	0								
2 to -1.2	2	2 to -1.2	2	2 to -1.2	1	2 to -1.2	2	2 to -1.2	7
-1.2 to4	4	-1.2 to4	3	-1.2 to4	3	-1.2 to4	5	-1.2 to4	15
4 to .4	2	4 to .4	6	4 to .4	9	4 to .4	7	4 to .4	24
.4 to 1.2	3	.4 to 1.2	2	.4 to 1.2	1	.4 to 1.2	4	.4 to 1.2	10
1.2 to 2.0	2	1.2 to 2.0	0	1.2 to 2.0	6	1.2 to 2.0	2	1.2 to 2.0	10
2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8	0	2.0 to 2.8		2.0 to 2.8	0
2.8 to 3.6	0								
GT 3.6	0								
Total	13	Total	13	Total	20	Total	20	Total	66



Rockwell 10Emco	Test Year 201	0					
5000 CFH		Control Gro	oup-Installed Y	'ear			
Code: 061	2005	2006	2007	2008			
Sample Plan	Single	Single	Single	Single			
Sample Size	8*	8	8	8			
Original Population	38	31	41	42			
# of Slow Failures	0	0	0	o			
# of Fast Failures	0	0	0	0			
Total Failures:	0	0	0	0			
Accept Level	1	1	1	1			
Reject Level	2	2	2	2			
Pass / Fail?	Pass	Pass	Pass	Pass			
If Failed - Remove By:	Exhaust	NA	NA	NA			
Statistical Data:							- - -
Mean (Average Proof)	-0.01875	-0.19375	-0.11875	-0.01875			
Median	-0.35	-0.325	0.05	-0.175			
Standard Deviation	0.78328	0.340627	1.038865	0.749285			
Sample Variance	0.613527	0.116027	1.079241	0.561429			
Skewness	1.292137	0.454936	-0.74281	1.18858			
Minimum	-0.7	-0.65	-1.95	-0.75			
Maximum	1.3	0.3	1.05	1.5			
Count	8	8	8	8			
Confidence Level(95.0%)	0.654838	0.284771	0.868513	0.626418			

* Control group in 5th year of service - maximum service period - all meters to be removed/tested. Sample size based on population was used to dertermine if group passed/failed in it's last year of service.

Meter Code 061 Rockwell 10M Emco

Code & Year:	2005	Code & Year:	2006	Code & Year:	2007	Code & Year:	2008	Code & Year:	Total
Data Range	Number								
LT -3.6	0								
-3.6 to -2.8	0								
-2.8 to2	0								
2 to -1.2	0	2 to -1.2	0	2 to -1.2	1	2 to -1.2	0	2 to -1.2	1
-1.2 to4	3	-1.2 to4	2	-1.2 to4	2	-1.2 to4	3	-1.2 to4	10
4 to .4	3	4 to .4	6	4 to .4	2	4 to .4	3	4 to .4	14
.4 to 1.2	1	.4 to 1.2	0	.4 to 1.2	3	.4 to 1.2	1	.4 to 1.2	5
1.2 to 2.0	1	1.2 to 2.0	0	1.2 to 2.0	0	1.2 to 2.0	1	1.2 to 2.0	2
2.0 to 2.8	0								
2.8 to 3.6	0								
GT 3.6	0								
Total	8	Total	8	Total	8	Total	8	Totai	32

Louisville Gas & Electric Regulator Inspection and Replacement Program Report 2010

Year 2010 Regulator Inspection and Replacement Program

I. Progress Summary

During 2010, LG&E replaced a total of 30,285 gas pressure regulators as part of LG&E's regulator inspection and upgrade program. An additional 1,514 regulators were replaced for other reasons such as improper function of the regulator, damage/vandalism, service line replacement, or meter loop repairs. The distribution of the reasons for these regulator replacements is shown in Table 1 below.

Reason	Quantity
Regulator Replacement Program	30,285
Failed Lockup Test	28
Vent Leaking	163
Leak on Regulator	5
Routine Change During Meter Loop Repair	427
Could Not Adjust Pressure	21
Damage/Vandalism	37
Routine Change During Service Renewal	830
Test Site	3
Total	31 700
i utai	51,799

Table 1	Year 2010	Regulator	Change	Reasons
Lavic 1.	1 Cai 2010	Regulator	Change	ICASONS

For the time period of 2002 – 2010, a total of 167,309 regulator replacements have been made (correction in math error on table 1 of 2007 report accounts for program to date total being 167,309 rather than 167,310). This total represents 88% of the approximately 190,554 residential regulators that are expected to be replaced over the ten year period of the regulator replacement program.

II. Safety

As part of LG&E's regulator replacement activities, safety inspections were performed and "red-tags" were issued when deficiencies were found. The results of these safety inspections directly associated with LG&E's regulator replacement program are summarized in Table 2 below.

Reason	Quantity
Houseline Leak (includes lines to gas grills,	63
pool heaters, appliance flexible hook-up lines, fireplace	,
etc.)	
Furnace Problem (internal leak, not burning correctly)	20
Leak or Not Venting Properly (dryer, range, water heater) 30
Flex Lines/Brass Connectors	561
Other Leaks (leaks on space heater, riser, etc.)	4
Misc. (trees, bushes, service line exposed, etc.)	.3
Total	<u>681</u>

Table 2: Year 2010 Safety Inspection Results

Additionally, the following Customer Surveillance Notices were issued to customers to correct outside deficiencies on their meter loop. The results of these safety inspections directly associated with LG&E's regulator replacement program, are summarized in Table 3 below.

Reason	Quantity
Corrosion / Rust On Outside Meter Loop & Associated Piping	6,018
Gas Meter In Contact With Soil / Pavement	32
Meter partially buried	17
Asphalt or Concrete Paving in Contact With Piping Entering Ground	310
Gas Piping Not Properly Supported	91
Meter Not Protected From Vehicular Damage	47
Customer Built Over Service Line / Around Meter	2
Tree / Shrubbery Growing Inside / Against Meter Loop	47
Total	<u>6,564</u>

Table 3: Year 2010 Customer Surveillance Notices Issued

The overall increase in customer surveillance notices being issued in 2010 compared to 2009 corresponds to the increase in regulator changes that were completed in 2010 compared to 2009.